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Abstract
Ship detection is significant for monitoring ports, especially contributing to the safe driving of Unmanned Surface Vehicle 
(USV). However, recent ship detection based on deep learning lacks complete ship datasets and uses the classification score 
as the ranking basis, which harms their performance. To address the problems, we present a one-stage localization estima-
tion detector (LEDet) with ship-customized data augmentation. Specifically, we integrate the localization quality estimation 
into the classification branch as a soft label localization score. We further apply ship-customized data augmentation named 
“cutting-transform-paste” to expand ship datasets without manual annotation. Hence, a large number of diverse ship datasets 
can be created. Extensive experiments show that our LEDet consistently exceeds the strong baseline by 8.0% COCO-style 
Average Precision (AP) with ResNet-50. It significantly improves the ship detection performance.
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1 Introduction

Unmanned Surface Vehicle (USV) is widely used in mili-
tary and civil ship detection. USV is a kind of surface robot 
without manual operation. Hence, the perception technol-
ogy is significant for the safe driving of USV. As the core 
of the unmanned system, USV perception can be applied in 
the port terminal to automatically detect ships and maintain 
marine safety. In recent years, USV is used to detect ille-
gal ships such as containerships, aircraft carriers, and so 
on with the infrared camera. Therefore, the desired detector 
must consider how to improve the performance of the USV 
perception. However, two problems existed in the optical 
ship detection methods lack high-quality datasets containing 
multiple types of ships, and inaccurate location estimates.

Massive datasets are crucial to the success of any machine 
learning task, and the task of ship detection is no excep-
tion. Unfortunately, there are no complete datasets for ship 
detection, and creating one is time-consuming. For example, 

the popular large datasets such as MS COCO (Lin et al. 
2014) and PASCAL VOC classify ships as only one kind 
and contain only 4814 and 300 unclassified ship images, 
respectively. In a specific application, classifying ships into 
multiple categories is necessary. Consequently, we collect 
the dataset of ship images and annotate 6 kinds of ship cat-
egories in this research. But labeling is a tough job. For 
example, COCO required 2000 working hours to create, and 
22 workers’ hours were spent per 1000 instance masks. This 
labor-intensive process means it is imperative to develop 
more efficient methods of creating datasets.

A simple method for generating ship image datasets pro-
ceeds as follows: annotate a portion of single datasets, then 
paste the labeled ships into the new sea pictures. With the 
random reorganization of image data, many ship images are 
generated. To some extent, this method can also create much 
more ships.

Moving from the problem of datasets to accurate detec-
tion, we must consider the cause of unreliable ship detec-
tion: the classification scores are used as the metric of Non-
Maximum Suppression (NMS) (Neubeck and Gool 2006). 
However, the classification scores cannot fully represent the 
ranking metric. Consequently, the algorithm will select unre-
liable detection results, as shown in Fig. 1.

To estimate localization quality for selecting reliable 
detection results, we consider integrating the ship location 
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information into the classification task to predict the class-
localization score. Finally, we can exploit the prediction 
score called localization quality score as localization accu-
racy to select detections in NMS.

Based on these ideas, we design a novel ship detection 
method named LEDet with data augmentation. There are 
two parts of the detector. One is a simple, yet effective ship-
customized data augmentation method named “cutting-
transform-paste” for expanding and strengthening ship 
datasets. The other part contains a localization estimation 
network to predict the class-localization score. By combin-
ing the two ideas, LEDet improves ship detection quality.

Contributions: to summarize, our contributions are as 
follows:

1. We put forward a novel ship detection method (LEDet 
with data augmentation) for USV that accurately detects 
ship targets.

2. We collect a large amount of multi-category ships and 
annotate each ship for constructing an initial ship data-
set. To rapidly augment datasets, we propose a simple 
method “cutting-transform-paste” to generate complex 
and diverse ship datasets.

3. We propose a novel localization estimation detector 
(LEDet) that addresses the estimation of localization 
accuracy. It is applied in the NMS procedure to accu-
rately rank a large number of candidate bounding boxes.

4. We achieve 62.7%AP on our ship datasets. Our detec-
tor consistently exceeds the strong baseline RetinaNet 
(54.7% AP) by 8.0%AP with the ResNet-50 (He et al. 
2016) backbone from extensive experiments.

The remainder of this paper is organized as follows. Sec-
tion 2 reviews the related work. In Sect. 3, we propose our 

novel data augmentation method and LEDet. All experi-
ments are given in Sect. 4. In the last section, we conclude 
this paper.

2  Related work

At present, traditional ship detectors use two methods to 
identify ships: ship structure and the characteristics of ships, 
or threshold-based edge detection respectively. The former 
ship structure and shape are used for manual feature design, 
while the latter directly utilizes the threshold to detect ship 
edge features. In 2012, Fefilatyev et al. presented a novel 
algorithm for the open sea. The large datasets collected from 
a prototype system (Fefilatyev et al. 2012) achieve the ship 
detection precision of 88%. In 2017, Zhang et al. proposed 
a new ship target detection algorithm for visual maritime 
surveillance. The three main steps: horizon detection, back-
bone modeling, and backbone subtraction, are all based on 
the discrete cosine transform (Zhang et al. 2017).

Although traditional methods have achieved good results, 
there are some challenges. For example, traditional meth-
ods (Chen et al. 2017; Zhi et al. 2014; Fingas and Brown 
2014) detect after sea-land segmentation and utilize the 
hand-crafted features for discrimination. But they have poor 
performance in near-shore areas and have difficulty ruling 
out false alarms. Additionally, these methods suffer under 
real-world conditions like noise, complex backgrounds, and 
minute hull differences.

With the rapid development of the deep convolutional 
neural network (CNN) in recent years, CNN has made great 
progress in the application of human faces, pedestrians, and 
other scenes. Besides, CNN is far superior to traditional 
methods in accuracy and speed. At the same time, there are 

Fig. 1  The misalignment between ship classification confidence 
and ship localization accuracy is illustrated in the cases. The yel-
low bounding boxes denote the ground truth (GT), while the red and 
green bounding boxes are both detection results yielded by Feature 
Pyramid Networks (FPN) (Lin et al. 2017). As shown in picture (a), 
the classification score of the red bounding box is 0.65 and the green 

bounding box is equal to 0.9. IoU between the red bounding box and 
GT is 0.7, and IoU between the green bounding box and GT is 0.51. 
Using classification confidence as the ranking metric will cause accu-
rately bounding boxes (in red) incorrectly eliminated in the traditional 
NMS procedure. Similarly, the green bounding box with a lower clas-
sification score but higher IoU with GT will be removed in picture (b)
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some ship detection algorithms such as the YOLO series 
(Redmon and Farhadi 2017, 2018; Bochkovskiy et al. 2020). 
Nowadays, we can simply classify the objection detection 
methods into anchor-based and anchor-free detectors by 
whether to use anchors. The anchor-based detectors contain 
two-stage and one-stage methods. Moreover, the anchor-
free methods divide into keypoint-based and center-based 
methods. (1) Anchor-based detectors: an anchor-based 
approach starts to get regional proposals with different 
but fixed scales and shapes by placing a large number of 
anchors. These anchors are then considered as object pro-
posals and an individual classifier is trained to determine 
the objectness as well as the class of each proposal such 
as the two-stage detector Faster RCNN (Ren et al. 2017). 
(2) Anchor-free detectors: an anchor-free approach does 
not assume the objects to come from uniformly distributed 
anchors. Recently, anchor-free approaches have been greatly 
promoted. Keypoint-based detectors such as CornerNet 
(Law and Cornernet 2018), CenterNet (Duan et al. 2019), 
ExtremeNet (Zhou et al. 2019), etc., group more than one 
keypoints into an object, while the Center-based detectors 
such as FCOS (Tian et al. 2019), FoveaBox (Kong et al. 
2020), SAPD (Zhu et al. 2020), etc.., however, these algo-
rithms based on CNN require larger datasets, which indeed 
emphasize the significance to build an adequate ship dataset 
for our specific detection task.

2.1  Boat datasets and data augmentations

Current datasets contain a few ship images and a limited 
range of image types. There are currently only six well-
annotated ship datasets, as shown in Fig. 2. Among these 
datasets, HRSC2016 is annotated by Kaggle. NWPU VHR-
10 annotated by Northwestern Polytechnic University has 
only 800 images in total, including 650 targets of ships a 
pitifully small number for deep learning. Among currently 

existing ship datasets, they are almost made up of exclu-
sively remote sensing images and few ship datasets based 
on RGB images. A complete multi-class ship dataset based 
on RGB images has more refined features than remote sens-
ing images and contains higher resolution. Hence, based on 
RGB ship datasets are beneficial for small target detection 
and localization quality.

For data augmentations, there are some works for detec-
tion, including general object detection (Zoph et al. 2020; 
Chen et al. 2021a) and specific object detection like pedes-
trian detection (Tang et al. 2021; Chen et al. 2021b). Unfor-
tunately, data augmentation receives little attention in the 
computer vision community. There is a much greater volume 
of work on backbone architectures (He et al. 2016; Kriz-
hevsky et al. 2012) and detection/segmentation frameworks 
(Girshick 2015; Girshick et al. 2013; He et al. 2017). Despite 
this lack of attention, data augmentations such as random 
crop (Krizhevsky et al. 2012; Simonyan and Zisserman 
2014; Lecun and Bottou 1998; Szegedy et al. 2015), color 
jittering (Szegedy et al. 2015), AutoRandAugment (Cubuk 
et al. 2019, 2020) have played a crucial role in achieving 
state-of-the-art results on image classification (He et al. 
2016) and self-supervised learning (He et al. 2020).

These methods are universally and mainly used for encod-
ing invariances to data transformations. Data augmenta-
tion generates more diverse data so that the network can 
learn more general features and improve its generalization 
performance.

2.2  Estimation of localization quality

Accurate estimation of localization quality is a challenging 
and important topic. Many methods have been proposed. 
In traditional methods, duplication detection is suppressed 
while ignoring localization accuracy and the classifica-
tion scores are typically used as the metric for ranking the 

Fig. 2  Illustration of current 
mainstream datasets and the 
number of ship images in 
datasets
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proposals. To estimate localization accuracy, IoU-Net (Jiang 
et al. 2018) and IoU-aware (Wu et al. 2020) use an addi-
tional network to predict Intersection over Union (IoU) as 
the representation of localization accuracy and exploit it to 
rank bounding boxes in NMS. FCOS ranks detections with 
predicted centerness scores and suppresses the low-quality 
detections. They all utilize an additional branch to perform 
localization quality estimation in a form of IoU or center-
ness scores. But this separate formulation causes two prob-
lems. First, separately formulating can cause inconsistency 
between training and testing as well as unreliable quality 
predictions mentioned in Generalized Focal loss (Li et al. 
2020). The other is the inaccurate localization quality which 
is estimated by adding an additional branch. Because the 
negative samples do not participate in the training, it is inac-
curate to use the score of extra branch prediction to estimate 
the localization quality.

To improve the inaccurate localization quality, IoU-bal-
ance (Wu et al. 2022) is proposed to assign different weights 
in the classification loss. They somewhat solve the inconsist-
ency but do not solve it completely. Therefore, we propose 
a localization estimation detector (LEDet) to address the 
problem. In the classification task, we integrate ship locali-
zation information predicting the ship localization quality 
score to estimate localization accuracy. Finally, based on the 
ranking of localization quality score, we solve the problem 
of inconsistency between training and testing.

3  Method

3.1  Datasets generation

In this section, we mainly introduce how to construct the 
ship datasets. To build the ship detection datasets with pre-
cise annotation, we collect six categories of ships to con-
struct initial ship datasets. The ship images were taken by 
both ordinary cameras and USV cameras to capture ship 
images and videos from multiple angles and different zoom 
ratios in the wharf and offshore waters. Specifically, in the 
process of taking, we use a variety of perspectives to take 
pictures of ships with different postures such as the bow, 
stern, and side of the ship. At the same time, we set differ-
ent zoom ratios of the camera to take pictures with different 
resolutions. In practice, we set parameters such as 0.5, 1, 
2, 5, and 10 times to obtain ship targets at different scales. 
In the end, we eliminate blurred pictures and keep the pic-
ture clearly with human subjective feelings. In addition, the 
images captured by USV do have some specific character-
istics compared to usual images captured by RGB cameras 
on the shore or at close range, including small objects, dif-
ferent views of ships, unstable image quality influenced by 
the unique marine environment, and special view (horizontal 

to the sea level), etc. For some rare military ships such as 
aircraft carriers and submarines, we captured from public 
datasets such as ImageNet, PASCAL VOC, MS COCO and 
used LABELIMG software to annotate each picture. Next, 
we introduced the content details of the ship datasets. Ships 
are categorized as ‘containership’, ‘sailing boat’, ‘aircraft 
carrier’, ‘speed boat’, ‘gondola’, and ‘submarine’, as shown 
in Fig. 3. In the process of image feature extraction, some 
factors such as visibility scale, visual angle, illumination, 
background, and occlusion are fully considered. In the 
end, our datasets contain 17,932 ship images. Figure 4 and 
Table 1 show the detailed ship categories and ratios of dif-
ferent ship categories.

3.2  Data augmentation

To rapidly augment the number of images in the ship dataset, 
we present a new method named “cutting-transform-paste” 
(CTP).

The CTP method consists of three steps. In the cutting 
step, we cut and copy the ground-truth boxes of the ships 
with their category and location from each picture. In the 
transform step, many image transformation operations 
which contain flip, rotate, scaling, and so on are performed 
on the copied ship images. For each image transformation 
parameter, the guidelines we follow in our experiments are 
to facilitate image feature extraction. All parameters are 
the super parameters set by the author. To obtain ships of 
different sizes, we set a random scaling factor. If the size 
of the ship targets in the picture is less than 100 × 100, we 
enlarge the size of the ship by setting a 2 × scaling factor. 
Otherwise, we scale the size of a ship by 0.6×. The main 
purpose is to extract the different sizes of ships as long as 
they are clear. In addition, we found that the scaling factor 
cannot be set too large or too small and it will cause the ship 
to be unclear and affect the detection accuracy. The rotation 
angle is usually set to 45 degrees and 90 degrees. After these 
transformations, we paste these instances on the new sea 
images anywhere. All in all, the purpose of flip and rotation 
operations is to augment the perspectives of the ship. Other 
transformations such as block clipping and Gaussian noise 
are set to simulate ship shelter and the complexity of the sea 
background. Consequently, these parameters are determined 
according to the experimental results. Next, the transformed 
images are randomly pasted into new sea surface images that 
came from our team collected in advance, while generating 
new pictures. Consequently, the total number of ship data-
sets has been doubled. The general framework of the CTP 
structure is shown in Fig. 5.

By reorganizing the position, gesture, scale, and other 
relationships between the ship images and the sea scene, the 
diversity and complexity of the data are greatly expanded. 
33,691 ship images could be obtained from our original 
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17,932. Using this method makes it simple and effective 
to create new and challenging training pictures, which can 
improve detection performance.

When conducting the image transformation operations, 
there will be an infinite number of images generated theo-
retically. However, our experiments show that doubling 
the ship images is the best choice to get the best detection 

accuracy. Once we paste more than two times, the accuracy 
will decrease. Table 2 demonstrates this phenomenon.

3.3  Localization estimation network

To solve the inaccurate estimation of localization accu-
racy in ship object detection, we propose a localization 

Fig. 3  Examples of constructed initial ship datasets and their categories. a containership b sailing boat c aircraft carrier d speedboat e gondola f 
submarine
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estimation detection network. In the localization estimation 
task, we smooth the original category label 0.1 and utilize 
the IoU between the predicted bounding box and GT as the 

localization label, as shown in Fig. 6. At the same time, 
the soft label localization score simultaneously represents 
the localization accuracy of bounding boxes. Therefore, we 
exploit the soft label localization score to address the repre-
sentation of localization accuracy in one task.

Based on the motivation of the RetinaNet detector, we 
design a novel one-stage detector called LEDet. Instead of 
learning to predict the class label for a bounding box, we 
merge the localization accuracy score into the classification 
branch called localization quality score which can represent 
the certain class label and localization accuracy for a bound-
ing box.

Figure 7 illustrates the network architecture of LEDet and 
the overall network architecture is the same as the RetinaNet. 

Fig. 4  Histogram statistics of 
the ship categories

Table 1  The detailed information of initial ship datasets

Category Image numbers Ratio

Sailing boat 6224 0.347:1
Containership 3900 0.218:1
Gondola 3900 0.218:1
Speed boat 1300 0.073:1
Aircraft carrier 1300 0.073:1
Submarine 1300 0.073:1

Fig. 5  Illustration of the proposed CTP structure. Firstly, we exploit 
intercept transformation to obtain the ship target image. Secondly, we 
employ the kinds of data augmentation transformations such as ran-

dom scaling, random flip, random rotation, random block clipping, 
and random Gaussian noise to obtain challenge ship images. In the 
end, we paste the ship images into the new sea picture
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The whole network structure consists of three parts: back-
bone, neck, and detection head. The difference between the 

RetinaNet and the LEDet is the detector’s head structure. 
The LEDet consists of two subnetworks. The bounding box 
regression subnet performs bounding box regression, while 
the localization score estimation subnet predicts the localiza-
tion quality score. In the inference stage, the network out-
puts localization scores for six categories of ships. Hence, 
we exploit the highest score as its localization score and its 
certain ship label.

Table 2  Compare the influence of doubling the ship images and tri-
pling the ship images on detection accuracy

Bold values indicate our experimental conjecture

Method AP AP
50

AP
75

Doubling the ship images 62.7 84.6 68.6
Tripling the ship images 58.9 81.3 64.0

Fig. 6  An illustration of the localization estimation branch. Instead of learning to predict the class label for bounding box (a), we learn the soft 
label localization score (b)

Fig. 7  The network architecture of our LEDet. The LEDet is built on the FPN(P3-P7). Its head consists of two subnetworks. One is for regress-
ing the bounding box, and the other is for predicting the soft label localization quality score. H*W denotes the size of the feature map
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3.4  Loss function and inference

The training of our LEDet is supervised by the soft loss.

where p is the predicted localization quality score, and q is 
the target IoU score. For a positive training example, q is set 
as the IoU between the generated boxes and ground truth 
(gt_IoU) bounding boxes. For the negative training example, 
the training target q for all classes is 0.

Our loss is designed for regressing the continuous locali-
zation score. Unlike focal loss which treats positives and 
negatives equally, our loss treats them asymmetrically. As 
Eq. (1) shows, we weight the positive example with the train-
ing target q. For negative examples, we reduce the loss con-
tribution by set a factor of p� . But we do not down-weight 
positive examples in the same way. The main reason is that 
the positive samples are far less than the negative samples. 
Therefore, our loss focuses on high-quality positives rather 
than low-quality examples. Moreover, we need to balance 
the loss between positive samples and negative samples by 
setting an adjustable factor α.

3.5  Total loss function

Our total loss function is defined as follows.

where pi and qi denote the predicted and gt_IoU at the 
location i on each level feature map of FPN, respectively. 
Lbbox is the GIoU loss (Rezatofighi et al. 2019) and the rep-
resentation of the initial and ground-truth bounding box is 
bboxi and bbox∗

i
 , respectively. We weight the Lbbox with the 

training target qi , which is a value ∈ (0, 1] for positive exam-
ples and 0 otherwise. λ is the balance weight for Lbbox , we 
empirically set λ = 1.5 in this paper. Npos means the number 
of positive examples and is used to normalize the total loss.

We forward an input image through the network and 
remove redundant detections by using the NMS.

4  Experiments

4.1  Experiment settings

We evaluate the LEDet based on our augmented ship data-
sets. Specifically, the datasets contain 33,691 images with 
a resolution of 535 × 300. Among them, 29,169 images are 
used for training, and the rest are used for testing. We adopt 

(1)Soft(p, q) =

{

−q(qlog(p) + (1 − q) log (1 − p)) q > 0

−𝛼p𝛾 log (1 − p) q = 0

(2)

Loss =
1

Npos

∑

i

Soft
(

pi, qi
)

+
�

Npos

∑

i

qiLbbox
(

bboxi, bbox
∗

i

)

the standard COCO-style Average Precision (AP) as the 
evaluation metric.

4.2  Implementation and training detail

We implement LEDet with MMdetection (Chen et al. 2019). 
Unless specified, we adopt the default hyper-parameters used 
in MMdetection. We use the ImageNet (Jia et al. 2009) pre-
trained ResNet-50 with a 5-level feature pyramid structure as 
the backbone. During training, the input images are resized 
to keep their shorter side being 800 and their long side below 
1334. In the ablation study, the networks are trained using 
the stochastic gradient descent (SGD) algorithm for 90 K 
interactions (denoted as 1 × schedule) with 0.9 momentum, 
0.0001 weight decay, and 8 batch size. The initial learning 
rate is set as 0.005 and decayed by 0.1 at iterations 60 K 
and 80 K.

4.3  Inference detail

During the inference phase, we resize the input image in the 
same way as the training phase and then forward it through 
the whole network to output the predicted bounding boxes 
with a predicted localization quality score. We first filter 
out those bounding boxes with a 0.05 threshold and select 
at most 1 k top-scoring detections per FPN level. Then, the 
selected detections from all levels are merged and redundant 
detections are removed by NMS with a threshold of 0.5 to 
yield the final results.

5  Ablation study

To better understand the impact of each module, we inves-
tigate the performance of each module.

5.1  Soft label

We investigate the effect of the soft label as the training tar-
get in the classification subnet and research how the locali-
zation quality score we predicted affects the performance 

Table 3  Comparison of 
RetinaNet and our proposed 
LEDet (without data 
augmentation) method in our 
initial ship datasets

Bold values indicate our experi-
mental conjecture
Our LEDet-preserving bound-
ing boxes with accurate locali-
zation by soft label show sig-
nificant improvement in AP

Method AP AP
50

AP
75

RetinaNet 54.7 76.6 60.9
LEDet 56.6 76.7 62.6
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of the ship detector. Table 3 compares the detection results 
of RetinaNet and LEDet on the initial ship datasets without 
augmentation. It shows that RetinaNet achieves 54.7%AP 
and LEDet achieves 56.6%AP. Intuitively, we can observe 
that AP improved 1.9 percentage points (54.7%AP vs 
56.6%AP). This confirms the positive effect of the soft label.

As Fig. 8 shows, the detection results of LEDet are more 
reliable than RetinaNet. The detection score of the bounding 
box represents the localization quality score of ships, which 
is a more reasonable representation of the localization qual-
ity of ships.

5.2  Datasets augmentation (CTP)

To improve the performance of LEDet, we propose two 
methods of data augmentation for the initial ship datasets.

The first is to detect the sea line in the new sea pictures, as 
shown in Fig. 9, and then paste the copied ship image under 
the sea line to simulate the real scene of the ship, as shown 
in Fig. 10. The second is to randomly paste the copied ship 
on the new sea scene even in the sky. For the second method, 
we consider pasting different numbers of ships on a new sea 
picture to achieve complicated datasets. We want to aug-
ment more kinds of ship datasets by this method, as shown 
in Fig. 11. Based on the two methods proposed above, we 
investigate the effect of the two kinds of data augmentations. 
Table 4 shows our detector with these two data augmenta-
tion methods. We find that the accuracy of the ship detection 
algorithm is higher for the data augmentation with random 
pasting because the ship positions based on random copying 
are more diverse. Some pasted ship images even on sky rich 
the fined features and increase the global feature extraction 
of the detector. These extraordinary pictures sometimes are 
similar to flipping the vehicles which do not exist in realistic 
scenes. Our test datasets consist of all realistic pictures of 

ships on the sea and the train datasets contain the random 
pasted ship images even in the sky. Additionally, these aug-
ment pictures are only used in the training process. The real 
pictures are used for validation and testing. Consequently, 
the main idea is to train an accurate and robust ship detector 
for USV. Extensive experiments validate the better results 
of this augmentation method.

5.3  Diverse transformation

To increase the diversity of copied ship targets and ran-
domly paste them into the new sea pictures, we investigate 
the performance of different transformations for ship targets. 
Table 5 shows the effects of the operations such as random 
rotation, random flip, random scaling, block clipping, and 
random Gaussian noise with 0.5 ratios on the detection 
performance of LEDet. These results verify the effect of 
diverse transformations on our LEDet. Table 4 shows that 
our LEDet with the CTP method achieves 62.2%AP without 
transformation methods. As shown in Table 5, it is clear 
that LEDet with random rotation achieves 55.3%AP, about 
6.9%AP drop. LEDet with random scaling is only 54.1%AP, 
about 8.1%AP drop. LEDet with random block clipping is 
61.8%AP, about 0.4%AP drop. LEDet with random Gauss-
ian noise is 62.5%AP and the best transformation to our 
detector is random flip which is further boosted to 62.7%AP. 
Hence, some discoveries can be found from the effect of 
diverse transformation. Not all transformations can improve 
the performance of the detector. Only LEDet with random 
Gaussian noise (62.5%AP vs 62.2%AP) and random flip 
(62.7%AP vs 62.2%AP) can improve the performance of 
LEDet. The remaining methods all decrease the performance 
of LEDet.

Fig. 8  a RetinaNet uses clas-
sification scores to evaluate 
localization accuracy. b LEDet 
uses soft label localization 
scores to evaluate localization 
accuracy. The results show that 
our LEDet is more reliable for 
USV to locate ships
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5.4  Comparison with state‑of‑the‑art detector

The LEDet is compared with recent state-of-the-art detec-
tors on our ship datasets, such as RetinaNet, Faster RCNN, 
YOLOv3, YOLOv4, YOLOv5s, and SSD. Table 6 represents 
the results. Compare with the powerful baseline RetinaNet, 
our LEDet achieves 8.0% AP gaps with ResNet-50-FPN 
(54.7%AP vs 62.7%AP). This validates the contributions 
of our method. By comparing with the ship detection 
methods such as YOLOv3. It achieves 9.0%AP gaps with 
ResNet-50 backbone (53.7%AP vs 62.7% AP). Although 
recent YOLOv4/YOLOv5s detectors both have better per-
formance than YOLOv3. They all perform worse than our 
LEDet with random filp. Meanwhile, our one-stage ship 
detector LEDet is even better than two-stage detector Faster 
RCNN (62.7%AP vs 56.4%AP). All of the results validate 
the contribution of our method surpassing almost all recent 

state-of-the-art ship detectors. Therefore, LEDet has obvi-
ous advantages in ship detection and unique excellent char-
acteristics such as self-adaptability, and robustness, which 
determines its role in future USV perception.

6  Conclusion

To improve the localization accuracy of ship detection on 
the sea, in this paper, we propose a ship detector LEDet for 
USV which solves the lack of complete ship datasets and 
the inaccurate ranking metric of ship detection. The LEDet 
including CTP and soft labels is proposed to improve the 
accuracy of ship detection. Based on the ship dataset we 
generated, the evaluation standard of MS COCO reaches 

Fig. 9  Sea-sky-line detection of four different sea scene pictures. a–d are the results
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62.7%AP, which is 8.0%AP higher than RetinaNet and sur-
passes most of the recent popular object detectors. There-
fore, according to experimental results, we conclude that 
the dataset augmentation method of CTP can increase the 
complexity and challenge of ship training data. By reorgan-
izing the association and diversity between ship image data 
and new sea pictures, we can learn the invariant features of 
the ship and estimate localization accuracy accurately. For 
soft labels applied in the classification task, ship positions 
are integrated into the localization score estimation branch 
as a target to predict a certain category and localization 
accuracy. This makes the NMS more accurate as it filters 
the detection results according to the localization accuracy. 
All of the experiments validate the effectiveness of LEDet, 
and it can serve as a simple yet effective detector for USVs. 
Although the experimental study presented in this paper 

verifies LEDet with data augmentation improving the perfor-
mance of ship detection. Due to its limitation, some factors 
are still not satisfactory. Our ship dataset based on the CTP 
method only increases the similar ship data by transforming 
the ship images rather than new ship data. Large different 
ship data is significant for the detector. Besides, the effect of 
the sea environment such as sunlight, vapor, fog, and so on 
is sensitive to the performance of LEDet. Further studies are 
therefore in demand to consider how to augment much more 
ship data and address the environmental effect on our ship 
detector LEDet. Hence, the desired ship detector for USV 
with the developed theoretical method requires investigation 
in the future.

Fig. 10  Examples of the first data augmentation method to detect the sea line and then paste the ship image under the sea line. a–d are the results
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Fig. 11  Examples of the second data augmentation method. To paste the ship images on the new sea pictures randomly. a–d are the results

Table 4  Comparison of two kinds of data augmentations with LEDet

Bold values indicate our experimental conjecture

Method AP AP50 AP75

LEDet (under sea line) 60.4 82.2 65.5
LEDet (random paste) 62.2 84.3 67.8

Table 5  Performance of our diverse transformation methods with our 
proposed LEDet and evaluation on our constructed ship datasets

Bold values indicate our experimental conjecture

Method AP AP
50

AP
75

LEDet + random rotation 55.3 79.4 61.6
LEDet + random scaling 54.1 77.7 59.9
LEDet + random gauss noise 62.5 83.9 68.5
LEDet + random block clipping 61.8 84.0 67.6
LEDet + random filp 62.7 84.6 68.6
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