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Learning-Based Kinematic Control of a
Deployable Manipulator With Long

Span and Low Stiffness
Hu Liu , Yi Yang, Yudi Zhao, Yang Yang , Yan Peng , Huayan Pu , and Yang Zhou

Abstract—The deployable manipulator features long
span and low stiffness during operation, resulting in signif-
icant positioning errors. The conventional mechanism con-
trol model based on error parameters is complex, lengthy,
and challenging to guarantee accuracy in practice. This ar-
ticle proposes a learning-based kinematic control of the de-
ployable manipulator. First, an analysis of kinematic perfor-
mance and positioning error is presented. Then, the dataset
is built by collecting data in the real environment, and the
load factor that significantly influences the actual kinemat-
ics is taken as an extra feature. We propose a dataset build-
ing method based on manipulability according to the kine-
matic characteristics. A learning-based model consisting of
a gated recurrent unit (GRU) and a 1-D convolutional layer is
proposed, which is lighter and more effective than existing
methods. Trajectory tracking and target grasping experi-
ments are conducted to validate the performance of the
kinematic control. The experimental results demonstrate
that the proposed learning-based approach can achieve
precise control under variable loads. This method could
be extended to the kinematic control of similar deployable
manipulators or flexible robots.

Index Terms—Deployable manipulator, kinematic control,
learning, positioning error.
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I. INTRODUCTION

TRANSLATIONAL parallel manipulators (TPMs) have
been widely utilized in industrial assembly and food pack-

aging due to their characteristics of low actuation requirements,
easy control, and low cost. Many researchers have studied the
synthesis [1], [2], performance [3], [4], and structural opti-
mization [5], [6] of TPMs to further improve their capacities.
Two-degrees-of-freedom (DOF) TPM is an essential member
of the lower-mobility parallel mechanism family synthesized
in several types. Liu et al. [7] have designed a 2-DOF parallel
manipulator consisting of 2P (Pa) kinematic chains to enable
the end effector to move in a constant orientation. A planar
version of the Delta robot named Diamond has been proposed
by Huang et al. [8]. A 2-DOF TPM with parallel linear motion
components has been designed by Yang et al. [9] and applied in
an automatic docking device. To enlarge the workspace and save
storage space, some studies have introduced the concept of the
deployable mechanism into the design of parallel mechanisms.
Examples include the scissorlike mechanisms (SLiMs) [10],
Wohlharts polyhedral star transformers [11], and Hobermans
polyhedral mechanisms [12]. By combining the SLiMs and
TPMs, Gonzalez et al. have designed a 6-DOF parallel robot with
a triple scissor extender for aircraft assembly [13]. Yang et al.
[14], [15] have designed certain types of parallel lower-mobility
manipulators with dual scissor-like mechanisms (D-SLiMs).

In this article, we design and fabricate a 2-DOF deployable
translational parallel manipulator (DTPM) with D-SLiMs ac-
tuated by two rotary motors. It can be collapsed to a small
or stowed configuration for storage and expanded to a much
larger span or deployed configuration for working. In this
complex mechanism, the links are connected by many joints
with clearances, which are necessary and cannot be eliminated.
Therefore, the deployable manipulator features long span and
low stiffness during operation. The motion of the manipulator
is greatly influenced by the cumulative clearance and flexible
deformation errors. Some methods have been used for clearance
and deformation analysis, including the matrix method [16],
the interval approach [17], and the direct linearization method
[18]. Tsai and Lai [19], [20] used the transmission wrench screw
and joint twist screw to solve the problem and explained why
multiloop linkage accuracy is difficult to analyze. Zhang et al.
[21], [22] analyzed the flexible mechanisms based on the finite
element approach. However, the above theoretical analyzes are
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applicable primarily to serial manipulators or simple closed-loop
linkages. In the case of complex mechanisms involving numbers
of closed-loop limbs, links, and joints, the nonlinear equations
become lengthy and complicated. They are difficult and unstable
to be solved, and the result may be far from the actual situation.
Therefore, a learning-based kinematic control of the deployable
manipulator is proposed in this article.

Learning-based models, such as neural networks (NN), have
emerged as a favorable option due to their ability to approach
the nonlinear model and the low computational cost [23]. Re-
searchers have carried out related research, especially for serial
robot configurations. The use of NNs in obtaining kinematic
models of serial robots has been demonstrated in the paper
presented by Jha [24]. Raj et al. [25] have proposed feedforward
and radial basis functions (RBF) algorithms to solve the inverse
kinematic problem of a 5-DOF robot. Zubizarreta et al. [26] have
proposed a methodology that uses NNs to approximate the direct
kinematics of the 3PRS robot. Wang et al. [27] have proposed a
multilayer NN to solve the inverse kinematics of the continuum
manipulator. Toquica et al. [28] have proposed different deep
learning models, including long short-term memory network
(LSTM) and gated recurrent unit (GRU), to solve the inverse
kinematic problem of an industrial parallel robot.

The learning-based kinematic model demonstrates a new
way to control the robots and may potentially have benefits in
robustness and resilience [29], [30]. A learning-based system
minimizes the differences between the desired and actual out-
puts, thus, enabling kinematic control of the manipulator in a
more realistic way [31]. Almusawi et al. [32] have suggested a
learning-based motion control scheme of a 6-DOF serial robot,
where forward kinematics is used to train the model. Assal
et al. [33] have designed a learning-based control system for
the problem of online tracking of any arbitrary trajectory by
a redundant industrial manipulator. The principle of the control
system was based on generating approximate values for the joint
angle vector by using the fuzzy neural network (FNN). Jolaei
et al. [23] have proposed a learning-based control framework for
soft tendon-driven catheters that uses a support vector machine
(SVM) classifier to determine which tendon to be driven and four
fully connected NNs to determine the length of the tendons.

The main limitations of the above studies include the fol-
lowing. First, the research object is mainly the robots with
high stiffness and minor errors, such as industrial manipulators.
Second, the analysis of the dataset is inadequate. Third, the
effect of external factors, such as load, on the actual kinematics
is not considered. The highlight of this article is the use of
learning-based kinematics to control the deployable manipulator
with long span and low stiffness. The learning-based model
consisting of a GRU and a 1-D convolutional layer is proposed,
which is lighter and more effective than existing methods. The
dataset is built by collecting the moving platform’s position and
the corresponding joint angles under different loads in the real
environment. The load factor, which has a major influence on
the actual kinematics, is taken as an extra feature. It would allow
for compensation of clearance, deformation, and other factors
as the learning-based model is trained by the real data from
the motion of the mechanism. A dataset building method is

Fig. 1. Structure of the 2-DOF deployable manipulator.

proposed based on manipulability according to the kinematic
characteristics, which can characterize the model better in the
case of a small sample size. The experimental results show that
the proposed control scheme can achieve precise control under
variable loads in real time.

This rest of this article is organized as follows. Section II
presents the analysis of kinematic performance and positioning
error. Section III gives a detailed description of the learning-
based kinematic control framework. Section IV depicts the
experiment process, including trajectory tracking and target
grasping, to validate the proposed scheme. Finally, Section V
concludes this article.

II. KINEMATIC PERFORMANCE AND ERROR

A. Forward and Inverse Kinematics

The proposed 2-DOF DTPM composed of the D-SLiMs is
shown in Fig. 1. The intermediate link C1C2 links the two
corresponding corner joints of the two identical parallel SLiM
limbs, i.e., Limb 1 and Limb 2. Based on screw theory, it can be
deduced that the moving platform B1B2 has two translational
mobilities. Two rotating actuators are mounted at the joint of the
fixed platform to drive the moving platform to translate in the
XY plane.

We first consider half of Limb 2, which is marked by the zigzag
dashed segments. The origin of the base coordinates {B} is set
on Point A1. By default, the coordinates are based on the base
coordinate system {B}. The number of zigzag segments between
A2 and C2 is m, the number of zigzag segments between A2

and B2 is n, the length of the SLiM link is 2l0, and the length of
links B1B2 and C1C2 are both l1. Coordinates of joints B2 can
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be expressed by θ2 and β2{
XB2 = ΛX−B2 (θ2, β2) = nl0 cosβ2 cos (θ2 + β2) + l1
YB2 = ΛY−B2 (θ2, β2) = nl0 cosβ2 sin (θ2 + β2)

.

(1)
Similarly, the coordinates of joints B1 are{
XB1 = ΛX_B1 (θ1, β1) = −nl0 cosβ1 cos(θ1 + β1)
YB1 = ΛY _B1 (θ1, β1) = nl0 cosβ1 sin(θ1 + β1)

. (2)

As the moving platform has only two pure translational mo-
bilities in the XY plane, Limbs 1 and 2 are always in the same
configuration. The corresponding links are either collinear or
parallel. Hence, the angles θ1, θ2, β1, and β2 should satisfy

β1 = β2 =
π − θ1 − θ2

2
. (3)

According to (2) and (3), the inverse kinematics can be
deduced as follows:{

θ1 = arccos XB1
−nl0 cosβ1

− β1

θ2 = π − arccos XB1
−nl0cosβ1

− β1
. (4)

B. Analysis of Kinematic Performance

The Jacobian matrix serves as the foundation for kinematic
performance analysis. The singularity of the manipulator can be
studied by analyzing the rank of the Jacobian matrix, while the
dexterity can be assessed by analyzing the manipulability which
is also derived from the Jacobian matrix. The Jacobian matrix
Ja of the manipulator is

Ja =
[
Ja1 Ja2 Ja3 Ja4

]
(5)

where

Ja1 =

⎡
⎢⎢⎣

−nsinθ1

(1 −m) sinθ1

0
0

⎤
⎥⎥⎦ Ja2 =

⎡
⎢⎢⎣

−nsinθ2

− (1 +m) sinθ2

0
0

⎤
⎥⎥⎦

Ja3 =

⎡
⎢⎢⎣

−n (sinθ1 + sinθ2) /2
(1 −m) (sinθ1 − sinθ2) /2

1
0

⎤
⎥⎥⎦

Ja4 =

⎡
⎢⎢⎣

−n (sinθ1 + sinθ2) /2
(1 −m) (sinθ1 − sinθ2) /2

0
1

⎤
⎥⎥⎦ .

The determinant of Ja is

|Ja| = 2n sin θ1 sin θ2 . (6)

Equation (6) shows that if θ1 ∈ {0, π} or θ2 ∈ {0, π}, the
determinant of Ja is zero, and the manipulator is in singularity.

Manipulability is a crucial metric for evaluating kinematic
performance. It is defined as the determinant of the product of
the Jacobian matrix and its transpose, denoted as w

w =
√

det (JaJT
a ). (7)

Assuming l0 = 114 mm, l1 = 182 mm, m = 5, and n = 14,
the manipulability is investigated in the entire workspace as

Fig. 2. Manipulability in the entire workspace.

shown in Fig. 2. For clarity, the skeleton of the manipulator is
incorporated. The input angles θ1 and θ2 are limited in the range
θ1 ∈ [5◦, 175◦] and θ2 ∈ [5◦, 175◦] to avoid singularity. The re-
sult shows that the manipulability decreases significantly when
the mechanism approaches the singular configuration, indicating
poor kinematic performance in these regions. Lower manipula-
bility values signify poorer kinematic performance, while higher
values suggest better performance. Since the manipulability
can represent the kinematic performance of the mechanism,
the dataset built based on manipulability can characterize the
kinematic model better in the case of a small sample size, which
will be further analyzed in Section III-C.

C. Analysis of Positioning Error

As the manipulator features long span and low stiffness, the
positioning error between the analytical and actual motion is
considerable and significantly influenced by the load factor.

By assigning joint angles, we sampled 144 actual points in
the workspace. It is worth noting that due to the actual angular
range being within [5◦, 65◦], the actual workspace is only a
portion of Fig. 2. We analyze the errors between the actual
points and their corresponding analytical points. Fig. 3(a)–(c)
illustrates the distance errors, X-axis errors, and Y-axis errors,
respectively, with the colors representing the error values. The
figures demonstrate a significant discrepancy between the an-
alytical and actual motion. The results are consistent with the
analysis of kinematic performance in Section II-B, indicating
that areas with high manipulability exhibit smaller errors while
areas with low manipulability exhibit larger errors. The X-axis
errors significantly increase when the manipulator is near the
singular position. The Y-axis error is reduced as the value of the
Y-axis coordinate increases. Generally, the error of the Y-axis is
much larger than that of the X-axis. Hence, the errors between
the analytical and actual motion are primarily attributable to
the Y-axis errors. This is further supported by the similarities
between Fig. 3(a) and (c). Fig. 3(d) depicts the relationship
between joint angles (θ1, θ2) and the Y-axis coordinate of the
moving platform under different loads (M1 = 0 g and M2 =
300 g). It is evident that the load factor {Mi} greatly influences
the Y-axis coordinate. When the two joint angles are relatively
small, i.e., the manipulator is in the folded configuration, the
Y-axis coordinate is greatly affected by the load. The maximum
error is approximately 110 mm. On the contrary, when the two
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Fig. 3. (a) Distance errors, (b) X-axis errors, and (c) Y-axis errors
between the actual and analytical points. (d) Y-axis coordinate of the
workspaces under different loads.

joint angles are relatively large, i.e., the manipulator is in the
expanded configuration, the Y-axis coordinate is less affected
by the load.

In traditional approaches, the positioning error is primarily ad-
dressed by considering the joint clearances. The joint clearance
is typically treated as a virtual link to simplify the analysis of the
positioning errors of the mechanism, known as the equivalent
joint clearance link (EJCL) [19], [34], [35], [36]. However, even
a mechanism with few joints and closed loops can result in a large
number of constraint equations. Specifically, the deployable
manipulator in our article has 44 joints, 41 links, and more than
20 closed loops. If we apply the generalized method to analyze
the positioning error, the number of constraint equations would
exceed 300, making the calculation difficult and computationally
expensive. Therefore, we propose the learning-based kinematic
control framework in the next Section.

III. LEARNING-BASED KINEMATIC CONTROL FRAMEWORK

A. System Overview

Fig. 4(a) shows the mechanism of the deployable manipulator.
Two motors controlled by the controller are installed at the
fixed platform to drive the moving platform to translate in
the XY plane. Eight intermediate links are added as redundant
constraints to reduce idle motion during operation. A gravity
sensor, a depth camera, and a gripper are mounted on the middle
of the moving platform. The base coordinate system and camera
coordinate system are denoted as {B} and {C}, respectively.

The detailed hardware configuration is illustrated in Fig. 4(b).
The manipulator controller employs a member of the STM32
microcontroller family. The two servo motors (DHPS 380,
DHMCU) are powered by a 24V dc source. The motor is
equipped with a 12-b magnetic encoder, offering a resolution

Fig. 4. (a) Mechanism of the deployable manipulator. (b) Hardware
configuration.

of 212, which allows for the detection and precise reporting
of 4096 distinct rotational positions. The theoretical accuracy
of the motor is 0.087°. The STM32 microcontroller controls
the two motors and the gripper via pulsewidth modulation
(PWM) signals and communicates with the computer through
Python programming. The depth camera (RealSense D435i,
Intel) conveys target position information to the system, while
the gravity sensor (AR-DN332, ARIZON) supplies feedback on
load information. The depth camera is calibrated prior to use,
and the depth error in the workspace is less than 2 mm, which
has a negligible impact on the motion experiments.

B. Control Framework

To achieve the precise control of the deployable manipulator
for vision-based grasping, the learning-based kinematic control
framework is proposed and presented in Fig. 5. First, a 5-feature
{θ1, θ2, Xi, Yi,Mi} dataset is built by collecting the moving
platform’s position and the corresponding joint angles under
different loads in the real environment. Then, the generated
dataset is used to train the learning-based model. The forward
kinematics takes {θ1, θ2,Mi} as the input and {Xi, Yi} as the
output. In contrast, inverse kinematics takes {Xi, Yi,Mi} as
the input and {θ1, θ2} as the output. It should be noted that the
forward and inverse kinematics are trained separately. Since
the forward and inverse kinematics are basically similar in the
training process, the following study takes inverse kinematics
as the representative example. Finally, the kinematic control
of the deployable manipulator is carried out based on the
learning-based forward and inverse kinematics.

The load information, two actuator angles, and target coordi-
nates are extracted during the control process to facilitate precise
control. Real-time load information is acquired through the
gravity sensor. According to the current actuator angles and load
(θ′1, θ

′
2,M), the coordinates of the moving platform (X,Y ) can

be determined by the forward kinematics. The target coordinates
(CXt,

CYt) based on {C} are obtained by depth camera through
the target detection algorithm You Only Look Once (YOLO)
and the depth information in the center of the bounding box.
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Fig. 5. Learning-based control framework of the deployable manipulator.

Fig. 6. Configuration of dataset building.

Since the relative position between the camera and the moving
platform is fixed, the target coordinates (BXt,

BYt) can be
calculated through coordinate transformation. After obtaining
(BXt,

BYt,M), the corresponding joint angles (θ1, θ2) can be
determined by using inverse kinematics. Then, the two actuator’s
joint angles are controlled by PWM to reach the target position.

C. Dataset Building and Analysis

Fig. 6 illustrates the configuration of dataset building, primar-
ily comprising the deployable manipulator, a motion capture
device (Visualeyez III VZ10K, Phoenix Technologies Inc.),
markers, and a computer. The markers are attached to the moving
platform and the origin of the base coordinates. The coordinates
of the moving platform (X,Y ) can be obtained by utilizing the
optical motion capture device, which tracks the markers. Since
the influence of load on the actual kinematics is evident, the
load should be considered as one of the features of the dataset.

Therefore, the datasets have 5-D features {θ1, θ2, Xi, Yi,Mi},
i.e., two actuator angles, 2-D coordinates of the moving plat-
form, and load. We collected the data under six load conditions
Mi ∈ {0, 50, 100, 150, 200, 300} g. The joint angles (θ1, θ2) are
represented by pwm ∈ [1100, 1700] because the two actuators
are controlled by PWM. The linear relationship between joint
angle and PWM is as follows:

θ =
1750 − pwm

10
. (8)

The distribution of the dataset plays a crucial role in the
performance of the learning-based model. The impact of the
dataset distribution is analyzed while disregarding the load fea-
ture {Mi}. Hence, the model only has two inputs {Xi, Yi} and
two outputs {θ1, θ2}. The dataset contains 144 samples acquired
under the load of 0 g. The ratio of the training set to the testing
set is approximately 7:3. To ensure an accurate evaluation of the
model’s generalization ability, the testing set contains not less
than 40 samples.

Fig. 7(a) illustrates a scenario where the range of the training
set encompasses only a portion of the workspace, with points of
the testing set situated outside this area. This type of situation
is referred to as a disjoint distribution. As shown in Fig. 7(b),
the training set is uniformly distributed in the entire workspace,
which is called uniform distribution. The uniform distribution is
the most common dataset distribution.

We propose a dataset distribution based on manipulabil-
ity according to kinematic characteristics. As evident from
Section II-B, the manipulability represents the kinematic per-
formance of the mechanism. When the mechanism approaches
singular positions, the manipulability decreases significantly,
and the kinematic performance becomes poor. It is assumed that
the actual kinematic model to be fitted by the learning-based
method is P∗. In the region with low manipulability, P∗ changes
significantly. Conversely, P∗ is relatively smooth in the region
with high manipulability. For fitting the kinematic model P∗,

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination. 

Authorized licensed use limited to: SHANGHAI UNIVERSITY. Downloaded on July 28,2023 at 05:55:51 UTC from IEEE Xplore.  Restrictions apply. 



6 IEEE/ASME TRANSACTIONS ON MECHATRONICS

Fig. 7. Effect of the dataset distribution on the learning-based model.
(a) Disjoint distribution. (b) Uniform distribution. (c) Manipulability distri-
bution. (d) Comparison between disjoint distribution and uniform distri-
bution with 100 samples. (e) Minimum number of samples required for
uniform distribution. (f) Comparison between manipulability distribution
and uniform distribution.

the region where P∗ changes significantly require more sam-
ples, and samples can be appropriately reduced in the smooth
region. Therefore, manipulability is utilized as a guide for dataset
building. The manipulability dataset is shown in Fig. 7(c), where
more sample points are selected as the manipulability decreases.
Thus, the manipulability distribution dataset can characterize the
kinematic model better in the case of a small sample size.

Fig. 7(d) compares the disjoint distribution and uniform dis-
tribution with 100 samples. The model attains an accuracy of
only 98.3% when the dataset follows the disjoint distribution. In
contrast, the result by uniform distribution can reach 99.4%,
which is obviously better. Fig. 7(e) indicates the minimum
number of samples required for uniform distribution. It should
be noted that the model’s accuracy has an upper limit because
of measurement error, arrival position error, and other factors.
Increasing sample size is not always beneficial because they also
accumulate errors simultaneously. When the dataset is uniformly
distributed, at least 25 samples are needed to achieve the same
accuracy as 100 samples. Fig. 7(f) indicates that 20 manipula-
bility distribution samples can achieve the same accuracy as 25
uniform distribution samples and better than the same number

Fig. 8. (a) Configuration, (b) accuracy, and (c) loss for GRU model.

of uniform distribution samples. In general, the results show
that the manipulability distribution dataset can characterize the
kinematic model better in the case of a small sample size.

Therefore, the dataset should cover the operating workspace
as far as possible, and the sample selection should be guided
by manipulability. In this way, stable and satisfactory accuracy
can be obtained with fewer samples. For planar kinematics
modeling with 2-D inputs {Xi, Yi} and 2-D outputs {θ1, θ2},
achieving satisfactory accuracy requires only approximately 20
manipulability distribution samples, which is 20% less than the
conventional uniform distribution. After further consideration
of the feature {Mi}, it is verified by experiments that the model
with 3-D input and 2-D output requires at least 100 samples to
obtain satisfactory accuracy.

D. Learning-Based Model

GRU is one kind of deep learning model, which is another
changed version of LSTM [37]. In general, GRU has fewer
parameters than LSTM. The unique structure in GRU called
“gate” is similar to that in the electronic circuit whose state
can control the information flow. It enables the GRU to learn
the inner complicated and nonlinear relationship between the
input and output [37]. The GRU can turn the learning task easier
if some samples are identical in certain features [28]. In the
generated dataset, some samples are under the same load or iden-
tical in kinematic features. Convolution is distinguished by three
characteristics, namely, sparse interactions, parameter sharing,
and equivariant representations [38]. The convolutional layer is
greatly superior to the dense layer in storage requirements and
statistical efficiency [39].

The methodology employed for constructing the network is
delineated as follows. Initially, the architecture consists of a
singular gated unit and a final dense linear layer. Subsequently,
the model is tested to find how many outputs of the layers
maximize the accuracy and minimize the loss in the existing
network configuration. Given the insufficiency of only one gated
unit, a 1-D convolutional layer is added to stabilize the model
performance and reduce the computational cost. Notably, adding
extra GRU layers fails to enhance the model’s accuracy.

Consequently, the proposed learning-based model is shown
in Fig. 8(a). The model receives three inputs (Xi, Yi,Mi) that
feed the GRU layer, and then the GRU outputs a 1 × 40 vector.
The 1-D convolutional layer is fed by the GRU memory cell and
outputs a 1 × 40 weighted vector. The final dense linear layer is
used to predict the target joint angles θ1 and θ2.
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Fig. 9. Comparison of MLP, LSTM, and GRU models.

TABLE I
PERFORMANCE OF THE MLP, LSTM, AND GRU MODELS

The training dataset consists of 100 samples, which are 20
samples selected based on manipulability under loads of 0, 50,
100, 200, and 300 g. The testing set contains 70 samples acquired
under a load of 150 g. The loss function used in the training pro-
cess is mean squared error (MSE) loss. The model is compiled by
using an Adam optimizer with an initial learning rate of 0.01. The
network architecture and optimization framework are written in
Python using PyTorch. All training and network computations
are accelerated by graphics processing unit (GPU) on Nvidia
GTX 1080 and Intel Core i7-10700K central processing unit
(CPU).

In Fig. 8(b) and (c), the accuracy and loss for the GRU model
are presented. It is noted that the data shown in the figure is
smoothed, and the light-shaded part indicates the actual data.
The result shows that the model achieves over 93% accuracy
within the first 20 epochs. Then, it levels off at approximately
99.7% by about 200 epochs. In terms of the “loss” metric, the
value fluctuates around 18.95 after 200 epochs.

We select MLP and LSTM for comparison with the model
proposed in this article. The MLP approach is considered a good
solution to kinematics problems as it generalizes well [40]. The
MLP model has four dense linear layers between the input and
output layers, and the neurons in each layer are 128, 64, 32,
and 8. The LSTM is a general version of the GRU with similar
memory cells. The model has one LSTM layer connected to an
additional 1-D convolutional layer followed by a fully connected
layer to predict the joint angles (θ1, θ2).

The performance results of the MLP, LSTM, and GRU models
are shown in Fig. 9 and Table I. GRU and LSTM have similar
accuracy, both higher than MLP, while the convergence rate of
GRU is faster than LSTM. In terms of model stability, GRU
and LSTM perform better than MLP. In conclusion, the GRU
network exhibits the most favorable model performance.

IV. EXPERIMENTAL VALIDATION

A. Trajectory Tracking

The system is tested in tracking two desired trajectories to
evaluate the performance of the proposed kinematic control
framework. The trajectories are triangular and circular, denoted
respectively by T1 and T2. T1 is an isosceles triangle with three
vertices located at (−3, 1100), (397,1100), and (197,1300),
while T2 is a circle centered at (197, 1100) with a 200 mm radius.
The trajectories are defined in the preprocessed 100 intermediate
points in the feasible workspace.

Each trajectory is repeated five times with two loads (M1 = 0
g and M2 = 250 g). It should be noted that the load M2 = 250 g
does not exist in the training set or testing set. The control loop
updates the expected position in line with the temporal sequence
of intermediate points in each trajectory in the testing process.
Meanwhile, it follows the learning-based model to solve the joint
angles (θ1, θ2) corresponding to each intermediate point in real
time. For comparison, trajectory tracking based on analytical
models is also conducted. The optical motion capture device
records the position of the moving platform during the tests.

Fig. 10 illustrates the results of the triangular trajectory
tracking. In Fig. 10(a), the joint angles (θ1, θ2) deduced by the
analytical and learning-based models for the triangular trajectory
T1 are represented by dotted and solid lines, respectively. The
variation of the three curves is similar, but the error between
the angles obtained by the analytical model and the ones by the
learning-based model is obvious. The mean errors are approxi-
mately 7.9° under the load of 0 g and 10.4° under 250 g. The joint
angles θ1 and θ2 are used as the input for the control, resulting in
the trajectories shown in Fig. 10(b) and (c) under loads of 0 and
250 g, respectively. The trajectory error based on the analytical
model is significant, and it further grows with the load increase.
The trajectory based on the learning-based model demonstrates
high accuracy, outperforming the analytical model, and exhibits
excellent repeatability. With the objective of minimizing the
root-MSE (RMSE), the trajectories of the analytical model under
two loads are compensated in the X-axis and Y-axis directions,
as depicted in Fig. 10(d) and (e). It shows that even with the
offset, the learning-based model is more accurate to the truth.
Fig. 10(f) illustrates that the learning-based model can achieve a
high accuracy under different loads and generalize well because
the load M2= 250 g does not exist in the dataset. Another finding
is that the accuracy of the trajectory is higher at the beginning of
the motion, however, it begins to decline as the motion continues.
The plausible reasons for this phenomenon are that the position
of the manipulator’s motion depends on the previous state and
that the errors accumulate as the motion proceeds.

Fig. 11 illustrates the results of the circular trajectory track-
ing. Most findings are consistent with the triangular trajectory
results. In Fig. 11(a), the mean errors are approximately 8.0°
and 10.6° under loads of 0 and 250 g, respectively. As shown
in Fig. 11(b) and (c), the trajectory error is significant when the
value of the Y-axis coordinate is small, corresponding to the
state where the manipulator is relatively folded. The error along
the Y-axis is much higher compared to the X-axis. Fig. 11(d)
and (e) shows that the shape of the trajectory based on the
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Fig. 10. Results of triangular trajectory tracking based on the analytical and learning-based models. (a) Joint angles (θ1, θ2) deduced by the
analytical and learning-based models. (b) and (c) Triangular trajectories under loads of 0 and 250 g. (d) and (e) Comparison of trajectories based
on the analytical model with offset and learning-based model under loads of 0 and 250 g. (f) Comparison of trajectories under two loads.

TABLE II
SUMMARY OF THE PERFORMANCE OF THE LEARNING-BASED MODEL IN

TWO TRAJECTORIES UNDER DIFFERENT LOADS

learning-based model is closer to the target circular trajectory.
Fig. 11(f) demonstrates that the precision of the circular motion
is inferior to that of the triangular motion.

Tables II and III present the performance of the kinematic
control based on the learning-based model and analytical model
in terms of RMSE (average of five repetitions), error range, and
repeatability (standard deviation of the five trajectories).

The results indicate that the control scheme is fairly accurate
in tracking the desired trajectories, as the average RMSEs for
the two trajectories are 9.02 and 9.54 mm under loads of 0

TABLE III
SUMMARY OF THE PERFORMANCE OF THE ANALYTICAL MODEL IN TWO

TRAJECTORIES UNDER DIFFERENT LOADS

and 250 g, respectively. In contrast, the average RMSEs of the
two trajectories based on the analytical model are 39.74 and
58.96 mm. In the case of 0 and 250 g load, the proposed scheme
reduces the errors to less than one-fourth and one-sixth of the
errors of the analytical model, respectively. The RMSE values
of the learning-based model and analytical model with offset
illustrate that even with the offset, the learning-based model
is more accurate to the truth. By comparing the results of T1

and T2, the deployable manipulator performs better when it
moves in a straight line. Moreover, the system shows excellent
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Fig. 11. Results of circular trajectory tracking based on the analytical and learning-based models. (a) Joint angles (θ1, θ2) based on the analytical
and learning-based models. (b) and (c) Circular trajectories under loads of 0 and 250 g. (d) and (e) Comparison of trajectories based on the
analytical model with offset and learning-based model under loads of 0 and 250 g. (f) Comparison of circular trajectories under two loads.

Fig. 12. RMSE of triangular trajectory under different loads.

repeatability, evidenced by the standard deviation of the five
repetitive trajectories is 0.58–1.58 mm.

B. Generalization and Impact of Input Error on Accuracy

Triangular trajectory tracking experiments are conducted at
loads of 25, 75, 125, 175, 225, 275, 325, and 350 g to further
validate that the control system can work continuously within
the acceptable load range. It is worth mentioning that these
loads are not present in the training set or testing set, and the
loads of 325 and 350 g exceed the range of the training set.
The RMSE for each load is presented in Fig. 12, demonstrating

Fig. 13. Impact of input load errors on the trajectory accuracy.

good accuracy over the entire load range. The average RMSE
is 7.83 mm. Notably, the precision is almost unaffected by load
variations, as indicated by the nearly horizontal trend of the fitted
linear regression line with a slope of 0.037. The results show the
excellent generalization ability of the proposed control system.

To analyze how the system’s accuracy is affected when the
payload is entered incorrectly, triangular trajectory experiments
are conducted under actual loads of 0, 150, and 300 g, while
varying the input loads from 0 to 300 g in 50 g increments. Fig. 13
illustrates the experimental results, with points representing the
average values of three trials and curves representing the fitted
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Fig. 14. Target grasping experiment. (a) Initial state. (b) Detecting
target. (c) Grasping target. (d) Retracting to original. (e) Detecting plate.
(f) Releasing target.

lines. The results show that the error increases as the discrepancy
in input load grows, with an increasing rate of change. Within a
50 g input error, the RMSE difference remains relatively small,
approximately 1 mm. However, when the input error reaches
300 g, the error increases to approximately 22 mm, nearly three
times the RMSE of the correct input. Notably, when the input
load is set at 150 g, the system achieves relatively small errors
regardless of the actual load value within the acceptable range.

Thus, the control system can still operate effectively even
when the gravity sensor has a certain degree of error (±50 g).
The system exhibits insensitivity to noise within a certain range,
reflecting its good robustness. Furthermore, in the event of a
malfunctioning gravity sensor that cannot provide load feed-
back, the system can still operate with relatively small errors by
using an input load of 150 g. This demonstrates that our system
possesses a degree of resilience.

C. Target Grasping

As stated in the Introduction, conventional methods face
significant challenges in achieving successful target grasping
due to the complexity of the manipulator. The target grasp-
ing experiment is conducted to demonstrate that the proposed
learning-based approach can achieve precise control under vary-
ing loads in real time. Fig. 14(a) illustrates the initial state of the
manipulator under a load of M0 = 260 g (mass of gravity sensor,
depth camera, and gripper). When the depth camera detects
the target [see Fig. 14(b)], the manipulator reaches the target
position based on the proposed control framework and grasps
the target [see Fig. 14(c)]. Then, the load feature changes to
M1 = 295 g because the target is 35 g which is obtained by
the gravity sensor. Next, the manipulator retracts to the original
folded configuration, as shown in Fig. 14(d). When the depth
camera detects the plate [see Fig. 14(e)], the manipulator reaches
the position of the plate and places the target on the plate [see

Fig. 15. (a) Variation of two joint angles during the grasping. (b) Tra-
jectory of the experiment.

Fig. 14(f)]. Afterward, the load feature returns to M0 = 260 g
based on the gravity sensor, and the manipulator returns to the
initial state to prepare for the next capture.

Fig. 15 demonstrates the variation of two joint angles and the
trajectory of the target grasping experiment. Fig. 15(a) is divided
into five parts by the dotted line, representing the different stages
of the grasping experiment: (a) initial state, (b) detecting target,
(c) grasping target, (d) retracting to original, (e) detecting plate,
and (f) releasing target. In Fig. 15(b), points A, B, and C represent
the initial position, target position, and position of the plate,
respectively. The experimental results show that the proposed
learning-based kinematic control scheme can accurately grasp
and place targets of arbitrary mass over long distances.

V. CONCLUSION

This article proposes a learning-based kinematic control
framework to address the issue of positioning error in the deploy-
able manipulator with long span and low stiffness. The dataset is
built by collecting data in the real environment, and the load fac-
tor, which significantly influences the actual kinematics, is taken
as an extra feature. We propose a dataset building method based
on manipulability according to the kinematic characteristics. In
this way, the learning-based model only needs 100 samples, 20%
less than the conventional uniform distribution, and can achieve
99.7% accuracy. A learning-based model consisting of GRU
and 1-D convolutional layer is proposed, which is lighter and
more effective than existing methods. The trajectory tracking
experiments show the system’s high accuracy, with an average
RMSE of 9.02 mm under a load of 0 g and 9.54 mm under 250 g.
The experimental results prove that our approach possesses
strong generalization capabilities and may offer benefits in terms
of robustness and resilience. Target grasping experiments are
further conducted to validate the feasibility and practicality
of this kinematic control. In conclusion, the proposed control
scheme can achieve precise control under variable loads in real
time with low computational costs. In addition, it is highly
portable and easy to implement.
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It is noted that the proposed approach would be preferred over
the conventional approach if both of the following circumstances
are satisfied.

1) The manipulator is complex or flexible, making it chal-
lenging to develop an accurate analytical model.

2) With the same factors considered in the learning-based
model, the motion of the manipulator needs high repeata-
bility.

This article mainly focuses on the static issues related to
kinematic control. Future research can concentrate on dynamic
problems, such as dynamic grasping and addressing oscillation
during operation, to achieve more precise motion control for
manipulators with large span and low stiffness.
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