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a b s t r a c t

This paper deals with the behaviour of two helical layers of bent flexible risers. An
analytical model with frictional effects is developed to summarize the mechanical
behaviour of helical armour wires. To ensure a unified process of calculation, all formulas
are simplified to build up a system of quasi-linear partial differential equations. The nu-
merical solution is determined by finite difference method. Appropriate results are shown
in the paper. The geometrical quantities, slips and stresses are matched with other
analytical results and found valid.

© 2016 Elsevier Ltd. All rights reserved.
1. Introduction

In the offshore field, unbonded flexible risers are composite structures and represent a significant part in floating pro-
duction systems to provide fluid and gas transport. To adapt to the complexmarine environment, flexible risers are composed
of many reinforced layers which can suffer high deformation in bending behaviour, see Fig. 1. Among these layers, the tensile
armour wires are one of the main parts to provide low bending stiffness relative to axial and radial stiffness and the primary
cause for stress fatigue failure. Hence, the mechanical analysis of helical armour wire is the emphasis of study in bending
research of flexible risers.

The bending behaviour of flexible risers, especially the research focused on tensile armour wires, has been dealt with by
many authors throughout the past few decades. Different approaches have been proposed in order to search for an optimized
method to predict the structural response. F�eret and Bournazel [1] formulated simple equations for calculating the stresses
due to that the slip of armour wires follows a geodesic direction, however no evidence has been shown to prove this
axisymmetrical loads, evaluating contact pressure and relative slip between layers due to bending. It was assumedchoice. Out
and von Morgen [2] considered the Euler's equation to derive the bending stress of a helical wire on a bent cylinder, and
calculated the slippage of the wire also with the assumption of geodesic slip.

Witz and Tan [3] developed an analytical model for helical layers of unbonded flexible pipes. The model mainly concluded
the overall resultant bending moment before and after slip using energy method. They [3] also described the hysteretic
bendingmoment-curvature relationship. However, some important aspects including the calculation of stresses and slips still
remained uncertain. Sævik [4] dealt with a 3D curved beam element by using a computational model where the curvature
was prescribed, the constrained element only allowed longitudinal slip. A 2D curved finite element for umbilical analysis was
az).
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Nomenclature

r radius of a helical layer
R radius of the bent pipe
q, 4 angular coordinate
s wire arclength
a initial layer angle
T local unit tangential vector of the curve
N local unit normal vector of the surface
B local unit binormal vector
kg geodesic curvature of the wire
kn normal curvature of the wire
tg torsion of the wire
F,F wire sectional force and its component in orthonormal basis
M,M wire sectional moment and its component
p, p wire distributed load and its component
m, m wire distributed moment and its component
k torus curvature 1/R
ε relative curvature r/R
E elastic modulus
G shear modulus
A wire cross sectional area
g tangential strain of the wire
IN wire second N-axial moment of area
IB wire second B-axial moment of area
IP wire second polar moment of area
DT, DB wire slips in T and B directions
Dq, D4 wire slips in angular coordinate directions

Fig. 1. The structure of flexible pipe.
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also reported in Ref. [5]. Subsequently, a model included full back coupling with respect to bending stiffness by means of bi-
directional shear interaction was proposed in Ref. [6]. A further development which allowed transverse slip and full 3D was
reported in Refs. [7,8]. A research about theoretical and experimental studies of flexible pipes including a bendingmodel and a
3D curved element for umbilical analysis was concluded in Ref. [9]. This work included correlation studies with respect to full
scare experimental data in Ref. [4] - [6]. Costello [10] presented a model of wire ropes by applying curved beam equilibrium
equations which can be a reliable reference for bending behaviour study.

Ramos and Pesce [11] developed an analytical model for analysing the structure of flexible risers associated with bending,
twisting and tension. Using a system of equations including geometrical relations, constitutive equations and equilibrium
conditions, all unknowns can be solved based on an assumption of full-slip of the helical layers while subjected to bending.
Brack et al. [12] also studied the mechanical behaviour of flexible pipes against the potential failure modes subjected to
combined axial compression, bending and torsion by using finite element method. Both theoretical and experimental results
were discussed in the paper. Another finite element model was established by Bahtui et al. [13,14]. In the finite-element
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model, a fully explicit time-integration scheme was used for numerical analysis. However, a few simplifying assumptions
were made in the model and need to be modified in further investigation.

F�eret et al. [15] investigated bending behaviour and buckling resistance of flexible armour layers. F�eret and Momplot [16]
established a mathematical method to calculate stresses and slips in flexible armour layers. Leroy and Estrier [17] improved
the expressions of stresses and slips for both two armour layers and modeled a repeated bending behaviour with friction
based on [15]. However, the system of equations were not clearly derived in detail and some assumptions were made to
ensure the structure of mathematical model. Østergaard et al. [18] focused on the geometrical configuration which exactly
satisfies the equations of equilibrium for a curved beam on a frictionless toroid, then in Ref. [19], Østergaard et al. considered
frictional forces and developed the model under compression and bending configuration. Moreover, Tension behaviour and
Buckling collapse study of flexible pipes were also investigated by both analytical model and laboratory test in Refs. [20,21].
Tang et al. [22] summarized seven analytical models available in literature that basically covered the majority of the bending
behaviour research, and developed a three-dimensional finite element model for investigation.

Among these papers, due to peculiar method and complicated system of equations, Leroy and Estrier's model [17] has
become a meaningful topic to follow. Meanwhile, there still have some unclear parts in the paper including geometrical
model and numerical solution. The research presented in this paper discusses the bending behaviour of two helical layers
with friction. The mechanics of the frictional model in helical layers of bent flexible risers is based on Leroy and Estrier's
model [17]. Note that, one armour wire in each layer will be studied due to identical characteristics of each individual helical
wire.

The method proposed in the paper aims to determine a unified numerical implementationwhich is a totally mathematical
analysis for this bending problem, all equations are clearly and detailedly demonstrated to show the principle of flexible
pipe's mathematical model compared to Leroy and Estrier [17]. Moreover, the final numerical solution in Ref. [17] was
determinedwith a non-linearmethod, which is hard to ensure the accuracy and efficiency of results while applying to various
data. Many nonlinear numerical solution cannot guarantee the stability and blindly performs arithmetic on numbers without
actually examining the case and data first. In the present paper, simplicity of the algorithms has been emphasized, all for-
mulas are therefore simplified in moderation in order to build up a system of quasi-linear partial differential equations.
Compared to nonlinear method, quasi-linear method can efficiently reduce calculation time while the numbers of data in-
crease significantly. The good agreement found from analytical comparisons verifies accuracy of the proposed method. The
quasi-linear implementation will be put forward as follows.
2. Theory

The model theory for helical layers of bent flexible risers is divided into three parts. Firstly, the geometrical analysis of a
torus surface is illustrated. The helical wires are deformed with the variation of bending curvature, nevertheless, the accurate
deformation is unknown. Secondly, mechanical analysis, including equilibrium equations and constitutive relations are
presented based on the local orthogonal vectors frame. The third part is the discussion of friction model, which is clear to
demonstrate the pipes' behaviour by using the slips of two orthogonal directions.
2.1. Geometrical equations

To investigate the structure behaviour of helical wires embedded on a torus, a parameterization of a bent torus surface
must be established. In order to define the location of a point on surface, allowing for a conceptual simplification of moving
frames, two parameters q and 4 are chosen to determine this surface as a mathematical model, see Fig. 2. The torus equations
by Cartesian coordinates in matrix form is.
Fig. 2. Mathematical model.
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Sðq;4Þ ¼
2
4 xðq;4Þ
yðq;4Þ
zðq;4Þ

3
5 ¼

2
4 ðRþ r,cosqÞcos4
ðRþ r,cosqÞsin4

r,sinq

3
5 (1)
Where, r is the radius of a helical layer, R is the radius of the bent pipe. Each point, following a Cartesian description on the
torus surface, is now valid and given by Eq. (1) if two parameters q and 4 are determined, and this surface is continuous and
smooth, namely, all the geometrical quantities can be deduced from (1), including three local unit vectors (T,N,B) of an
arbitrary curve adhering to this surface and the relation between arc length s and parameter q. For this case, a curve on a
surface, the normal vector of surface N is determined instead of the normal vector of curve n. Moreover, the tangential vectors
are coincident. Hence, there will be a rotation from Frenet-Serret frame (t,n,b) to Darboux frame (T,N,B), see Fig. 3. All the
following details and derivation of geometrical quantities will be based on the theory of differential geometry by do Carmo's
textbook [23].

The unit normal vector N can be derived by the surface derivatives with respect to torus coordinates, which span the
tangent space of torus surface.

N ¼
vS
vq

� vS
v4����vSvq � vS
v4

����
¼ Sq� S4��Sq� S4

�� ¼
2
4�cosq cos4
�cosq sin4

�sinq

3
5 (2)
The unit tangential vector T can not be given on explicit form. However, assuming a is the initial layer angle of helix from
the unit tangential vector of coordinates 4 defined as t4 to unit tangential vector T, and if angle a is confirmed, one wire curve
will be fixed, q and 4 will hold a specific relation, the unit tangential vector T can be derived as follows.

Let q be the only parameter of the curve, considering the arc length s by definition is

sðqÞ ¼
Zq
q0

�������
dSðqÞ
dq

�������dq (3)
Then the unit tangential vector T will be given by

T ¼
dSðqÞ
dq����dSðqÞdq

����
¼ dSðqÞ

dq
,
dq
ds

¼

2
66666664

�ðRþ r,cosqÞsin4d4
dq

� r,sinq cos4

ðRþ r,cosqÞcos4d4
dq

� r,sinq sin4

�r,cosq

3
77777775
,
dq
ds

(4)
The relation between arc length s and coordinate q can be derived from Eqs. (3)e(1)
Fig. 3. Local frame transformation.
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ds
dq

�2

¼
�����dSðqÞdq

����
�2

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
dx
dq

�2

þ
�
dy
dq

�2

þ
�
dz
dq

�2
s

¼ r2 þ ðRþ r,cosqÞ2
�
d4
dq

�2
(5)
Meanwhile the unit binormal vector B can be calculated by

B ¼ T � N (6)
Hence, in order to calculate the three local unit vectors (T,N,B), the key point is to determine the relation between torus
coordinates q and 4. Leroy and Estrier [17] suggested the following assumption

8>><
>>:

d4
dq

¼ ε

tana
ð1þ hðq; εÞÞ

hðq; εÞ ¼ � 1
r,cosa

,
dDB

dq

(7)

Where ε¼r/R is the relative bending curvature, DB denotes the wire slip in B direction, and a represents the initial layer angle
of helix which is assumed as a constant in the equation. Eq. (7) was developed by Leroy and Estrier [17] and this assumption is
the only approximation in geometrical part.

All the geometrical quantities presented above are the intrinsic features of surface and will as initial data contribute to the
next analysis of mechanical parts.

2.2. Equilibrium equations

In order to study the mechanical behaviour of helical wires on torus, the direct approach is to establish a system of
equilibrium equations. According to the nature of armour wires, the kinematic description of local orthogonal vectors frame
must be determined so that the equilibrium equations will transform from a vectorial form to a componentwise form.

The differential formula of moving Darboux frame (T,N,B) with respect to arc length s is defined as

d

2
4 T
N
B

3
5 ¼

2
4 0 knds kgds
�knds 0 �tgds
�kgds tgds 0

3
5
2
4 T
N
B

3
5 (8)

Where kg is the geodesic curvature, kn is normal curvature and tg is torsion of the wire. Note that, in differential geometry, the
sign of kg depends on the orientations of the surface and curve. In current model, a positive geodesic curvature is defined by
the fact that the arc length s and coordinates q, 4 change at a same orientation. That means s and q, 4 should increase both
positive or negative. The geodesic curvature kg changes sign when the orientation of either surface or curve is changed.

On basis of Eq. (8) with three local unit vectors' expressions in Eqs. (2), (4) and (6), kg, kn and tg can be derived by

kg ¼ �T,
dB
ds

¼ B,
dT
ds

kn ¼ N,
dT
ds

¼ �T,
dN
ds

tg ¼ �B,
dN
ds

¼ N,
dB
ds

(9)
The final expressions of kg, kn and tg derived by Eq. (9) are

kg ¼
(
sinq

"
2r2
�
d4
dq

�
þ R2ð1þ εcosqÞ2

�
d4
dq

�3
#
� rRð1þ εcosqÞ

�
d2

4

dq2

�)�
dq
ds

�3

(10)

" �
d4
�2
#�

dq
�2
kn ¼ r þ Rð1þ εcosqÞcosq
dq ds

(11)
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tg ¼ R
�
d4
dq

��
dq
ds

�2

(12)
Substituting Eq. (8) into the following equilibrium equations for a curved beam on vectorial formwhich are widely used in
mechanical analysis of curved beam by many authors like Reissner [24], Ericksen and Truesdell [25],

dF
ds

þ p ¼ 0

dM
ds

þ T � F þm ¼ 0

(13)
the componentwise equations of equilibrium are developed by

dFT
ds

� knFN � kgFB þ pT ¼ 0

dFN
ds

þ knFT þ tgFB þ pN ¼ 0

dFB
ds

þ kgFT � tgFN þ pB ¼ 0

dMT

ds
� knMN � kgMB þmT ¼ 0

dMN

ds
þ knMT þ tgMB � FB þmN ¼ 0

dMB

ds
þ kgMT � tgMN þ FN þmB ¼ 0

(14)
In Eq. (13), F and M represent sectional forces and moments on vectorial forms, p and m are assumed to be integrable
functions of arc length s, denote the assigned force and moment per unit length. While in Eq. (14), FT, FN, FB and MT, MN, MB

represent the component sectional forces and moments along directions of T, N, B respectively. pT, pN, pB and mT, mN, mB

respectively represent the component distributed forces and moments corresponding to p and m. These mechanical quan-
tities will be derived by the later constitutive relations. Derivation of equilibrium equations are based on Love's terminal
textbook [26].

2.3. Constitutive relations

The following constitutive relations are routinely used so as to combine forces and deformations:

FT ¼ EAg
MB ¼ EIBDkn
MN ¼ �EINDkg
MT ¼ �GIrDtg

(15)
Where, E and G respectively represent elastic and shear moduli, A is cross sectional area of the wire, and IN, IB, IP are the
wire second moment of area. These quantities are known as constants when in practical analysis. g is the tangential strain. It
has the following linear simplified form with respect to DT, which denotes the wire slip in T direction by Leroy and Estrier's
derivation [17].

g ¼ sin a

r
dDT

dq
þ ε cos2a cosq (16)
It is noted that here the tangential force FT is only caused by pure bending, not including the initial tangential forces on
both ends corresponding to practical application.

Dkn, Dkg, Dtg are the changes of curvatures corresponding to the bent pipe which are given by the following expressions,
respectively
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Dkg ¼ kg � kinig

Dkn ¼ kn � kinin
Dtg ¼ tg � tinig

(17)

Where, kinig , kinin and tinig represent the initial curvature components of the armour wire when the pipe's curvature is zero, i.e.
ε¼0.

However, the final expressions of Dkg, Dkn and Dtg are complex and difficult for analytical analysis by solving Eqs.
(10)e(12). Applying Eq. (7), the following process is to linearize the expression of Dkg, Dkn and Dtg.

kg, kn and tg change with respect to bending curvature of torus. Considering the initial helical state that the structure is
unloaded, torus is right cylinder while armour wires are perfect helixes, then

8>>>>><
>>>>>:

r
R
¼ ε ¼ 0

hðq; ε ¼ 0Þ ¼ 0

d24

dq2
¼ 0

(18)

ini ini ini
By substituting Eq. (18) into Eqs. (10)e(12), the initial curvatures kg , kn and tg can be given by

kinig ¼ sinq
�
2r2,

ε

tana
þ R2,

ε
3

tan3a

�
sin2a

r2
¼ 0

kinin ¼
�
r þ R,cosq,

ε
2

tan2a

�
sin2a

r2
¼ sin2a

r

tinig ¼ R,
ε

tana
,
sin2a

r2
¼ cos a sin a

r

(19)
When bending curvature of torus is no longer null, by substituting the full expression of Eq. (7) into Eqs. (10)e(12),
meanwhile, using the following simplified Eq. (5) to replace the relation between arc length s and coordinate q,

�
ds
dq

�2

¼ r2 þ ðRþ r,cosqÞ2
�
d4
dq

�2

zr2 þ R2,
ε
2

tan2a
¼
� r
sin a

�2 (20)
from Eqs. (10)e(12), the changes of kg, kn and tg can be simplified into linear forms

Dkg ¼ ε

r
cosa

�
1þ sin2a

�
sinqþ sin2a

r2
,
d2DB

dq2
(21)

ε 2
��

2
� h 2

	

Dkn ¼

r
cos a 1� 2sin a cosq� 2

ε

sin a (22)

ε

�
2

�
2 2

�h	

Dtg ¼

r
cos a sina � 2cos a cosqþ sin a� cos a

ε

(23)
Eq. (21)e(23) were presented by Leroy and Estrier [17]. The formulas of Dkg, Dkn and Dtg are simplified into linear forms in
order to validate the process of analytical calculation. The derivation of simplification is clearly included here in order to
ensure the accuracy of calculation. Moreover, Eqs. (16) and (21) to (23) combine tangential strain and geometrical quantities
with wire slips DB and DT which will be convenient for frictional analysis.

2.4. Analysis of friction

When helical wires begin to slip, the local frame moves. Then the trace will generate two kinds of orthogonal direction
slips (DB,DT) and (Dq,D4), see Fig. 4. DB and DT are the wire slips along binormal direction B and tangential direction T, while Dq

and D4 represent the wire slips along the unit tangential directions of two coordinates q and 4, respectively.



Fig. 4. Local frame transformation.
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From Fig. 4, the relation between two orthogonal direction slips (DB,DT) and (Dq,D4) is the following expression�
Dq
D4

	
¼
�

cosa sina
�sina cosa

	�
DB
DT

	
(24)
In the analysis of friction (DB,DT), are chosen as the armour wires' displacements to develop frictional model, note that all
equations above are appropriate for both two armour layers, whereas the formulas in armour layers 1 and 2 will be shown in
different expressions while considering friction effects.

Since a is the initial layer angle which is considered as a constant, the subscripts 1 and 2 refer to the i th layer (i¼1,2), a is
given to hold a simpler form in frictional model:

a ¼ a2 � a1 (25)

2
The relative slip of layer 2 which is defined as d will hold a relationship with the slip of layer 1 in the following matrix
form "

d2B
d2T

#
¼
"
D2
B

D2
T

#
�
�
cosa �sina
sina cosa

	"
D1
B

D1
T

#
(26)
(DB,DT) and (dB,dT) can point out the slip directions of two layers of armour wires. In addition, the component frictional
forces along directions T and B must be determined while calculated in Eq. (14), the following scalar components qf,T and qf,B
(per unit length of a helix) are the orthogonal projections of friction force onto the two unit vectors in the directions of T and B
respectively.

For layer 1:

q1f ;B ¼ �
_D
1
Bffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�

_D
1
T

�2
þ
�
_D
1
B

�2r f 1q1N

q1f ;T ¼ �
_D
1
Tffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�

_D
1
T

�2
þ
�
_D
1
B

�2r f 1q1N

(27)
For layer 2:

q2f ;B ¼ �
_d
2
Bffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�

_d
2
T

�2
þ
�
_d
2
B

�2
s f 2q2N

q2f ;T ¼ �
_d
2
Tffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�

_d
2
T

�2
þ
�
_d
2
B

�2
s f 2q2N

(28)

i i
Where, f is the friction coefficient on the lower interface of the ith helical layer, qN is the normal force for the ith helical
layer (per unit length of a helix) which is the contact pressure, and _D

1
B, _D

1
T and _d

2
B,

_d
2
T can be written as
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_D
1
B ¼ vD1

B
vε

; _D
1
T ¼ vD1

T
vε

_d
2
B ¼ vd2B

vε
; _d

2
T ¼ vd2T

vε

(29)
The derivative form denotes sliding velocity with respect to bending curvature (ε¼r/R¼r,k), and this approach of friction
on helical layers was followed by Leroy and Estrier's model [17].

3. Quasi-linear method

Since all the equations are obtained by previous demonstration, this mechanical problem can be solved mathematically.
Assuming a simplified manner in which distributed moments are neglected, the relation between component distributed
loads piT , p

i
B in Eq. (14) and component frictional forces qif ;T , q

i
f ;B for two helical layers (i¼1,2) may be represented by the

following matrix form,

"
piT
piB

#
¼
"
qif ;T
qif ;B

#
�
�
cosa �sina
sina cosa

	" qiþ1
f ;T

qiþ1
f ;B

#
(30)

and the relation between component distributed loads pNi and the normal force qN
i for two helical layers (i¼1,2) is given by
piN ¼ qiþ1
N � qiN (31)

by substituting Eqs. (30) and (31) into Eq. (14), the final equilibrium equations can be validated and shown as
dFiT
ds

� FiBk
i
g � FiNk

i
n þ qif ;T � qiþ1

f ;T cosaþ qiþ1
f ;B sina ¼ 0 (32)

dFi
N
ds

þ FiTk
i
n þ FiBt

i
g � qiN þ qiþ1

N ¼ 0 (33)

dFi
B
ds

þ FiTk
i
g � FiNtg þ qif ;B � qiþ1

f ;T sina� qiþ1
f ;B cosa ¼ 0 (34)

dMi

T

ds
�Mi

Bk
i
g �Mi

Nk
i
n ¼ 0 (35)

dMi

N

ds
þMi

Tk
i
n þMi

Bt
i
g � FiB ¼ 0 (36)

dMi

B

ds
þMi

Tk
i
g �Mi

Nt
i
g þ FiN ¼ 0 (37)
This system of equations applies to both layers 1 and 2 (i¼1,2) and note that, for the external layer (i¼2), if friction caused
by the external sheath is neglected, then

q2þ1
N ¼ 0; q2þ1

f ;T ¼ 0; q2þ1
f ;B ¼ 0
Let q and the relative curvature ε be the only two changing parameters of all equations which will be given in the final
process of calculation, considering the constitutive relations of Eq. (15), FB and FNwill be derived from (36) and (37). According
to Eqs. (21)e(23), the expressions of FB and FN will be only controlled by one unknown quantity DB. This leads to the sub-
sequent calculation of the contact pressure qN in (33) and note that, from Eqs. (15) and (16), it can be shown that FT is a
function of unknown quantity DT. qN will be controlled both by DB and DT. Finally, by substituting Eqs. (33), (36) and (37) into
Eqs. (32) and (34), the final equations to be solved are Eqs. (32) and (34).

It is noted that in the final forms of Eqs. (32) and (34), the unknown quantities are wire slips DB and DT, other terms like r, R
and a will be given as constants when calculation begins. For convenience, the parameter s in differential terms can be
replaced by q using Eq. (20). Thus, the two unknown quantities DB and DT will become the functions of parameters q and ε. By
solving Eqs. (32) and (34) for each layer, it will be clearly shown howwire slips DB and DT vary directly with the parameters q
and ε. Finally, all the other unknown quantities like strains, stresses and moments will be derived from the relations with DB

and DT.
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Since this huge system seems complex and difficult to solve analytically, many authors descend to searching for other
solutions like finite element method. With the aid of finite element analysis software, this problem can be solved directly.
However, in a mechanical problem, an analytical solution should be prior to be considered. Leroy and Estrier [17] first tried a
quasi Newton method to solve a non-linear system, and as is demonstrated before, the process of calculation is not clear, it is
uncertain to show which approximation applies to the equations and how efficient this method is to solve the problem.

In the present paper, in order to seek for a unified solution, the final forms of Eqs. (32) and (34) will be simplified to a
system of quasi-linear partial differential equations for the purpose of using numerical method and due to quasi-linear
method, the solution is more efficient and unified than non-linear method.

3.1. Linearization

By previous demonstration, the final forms of Eqs. (32) and (34) cannot be fully linearized. The present method seeks to
keep the linear differential terms only, including first order dDB/dq, dDT/dq and second order d2DB/dq2, d2DT/dq2 terms and
considering all remaining terms corresponding to their linear differential terms as variable parameters. Due to frictional
effects, DB and DT will also vary with relative curvature ε, then all the ordinary differential terms will be replaced by partial
differential terms.

However, the expressions of these variable parameters are huge and not convenient for calculation. Since these expres-
sions mainly include the constants such as r, R, a and the two changing parameters q and ε, the method is to replace them by a
set of functions using the symbols A ðq; εÞ, B ðq; εÞ, C ðq; εÞ and D ðq; εÞ. The calculation then the final four partial differential
equations of two layers derived from Eqs. (32) and (34) are8>>>>>>>>>>>>>>>><

>>>>>>>>>>>>>>>>:

A 1ðq; εÞ,
v2D1

B

vq2
þ A 2ðq; εÞ,

v2D1
T

vq2
þ A 3ðq; εÞ,

vD1
B

vq
þ A 4ðq; εÞ þ p1T ¼ 0

B 1ðq; εÞ,
v2D2

B

vq2
þB 2ðq; εÞ,

v2D2
T

vq2
þB 3ðq; εÞ,

vD2
B

vq
þB 4ðq; εÞ þ p2T ¼ 0

C 1ðq; εÞ,
v2D1

B

vq2
þC 2ðq; εÞ,

vD1
B

vq
þC 3ðq; εÞ,

vD1
T

vq
þC 4ðq; εÞ þ p1B ¼ 0

D 1ðq; εÞ,
v2D2

B

vq2
þD 2ðq; εÞ,

vD2
B

vq
þD 3ðq; εÞ,

vD2
T

vq
þD 4ðq; εÞ þ p2B ¼ 0

(38)
Where,

p1T ¼ q1f ;T � q2f ;Tcosaþ q2f ;Bsina

p2T ¼ q2f ;T
p1B ¼ q1f ;B � q2f ;Tsina� q2f ;Bcosa

p2B ¼ q2f ;B

(39)
The derivation of functions A ðq; εÞ, B ðq; εÞ, C ðq; εÞ and D ðq; εÞ is processed in Maple environment, which is not included
here, since the expressions are complicated to present. However, the process of derivation is clear and simple by means of
previous demonstration in Eqs. (32) and (34).

Meanwhile, the expressions of qf,B and qf,T are given by Eqs. (27) and (28).
The frictional part in Eq. (38) is still not explicit. The difficulty is that the differential terms in Eqs. (27) and (28) are intricate

and hard to use in numerical methods. In order to turn into a quasi-linear differential form, let,

Q1 ¼ �f ,
q1Nffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

b2 þ
 
D1
T
_

!2

þ
 
D1
B
_

!2
vuut

Q2 ¼ �f ,
q2Nffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

b2 þ
 
d2T

_

!2

þ
 
d2B

_

!2
vuut

(40)
Where b is a coefficient employed to avoid numerical problem only when the denominator is zero and then the formulas of
qf,T,qf,B will be given by substituting Eq. (40) into Eqs. (27)e(28)



Y. Zhou, M.A. Vaz / Marine Structures 51 (2017) 152e173162
q1f ;T ¼ Q1,
vD1

T
vε

q1f ;B ¼ Q1,
vD1

B
vε

(41)

 
vD2 vD1 vD1

!

q2f ;T ¼ Q2,

T
vε

� B
vε

sina� T
vε

cosa

q2f ;B ¼ Q2,

 
vD2

B
vε

� vD1
B

vε
cosaþ vD1

T
vε

sina

! (42)
Hence, Eq. (38) has become a system of quasi-linear partial differential equations. The quasi-linear terms are A ,B , C ,D
and Q respectively corresponding to partial differential terms v2DB

vq
2 , v

2DT

vq
2 , vDB

vq
, vDT
vdq and

vDB
vε ,

vDT
vε . These four equations are based on

Eqs. (32) and (34) for two helical layers. The four unknown quantities are D1
B, D

1
T , D

2
B and D2

T . If symbols A ,B ,C ,D andQ can
be confirmed, with one initial condition and two boundary conditions, the partial differential system will be solved
numerically.

3.2. Final pending equations by conclusion

It is noted that Eq. (38) is a quasi-linear system which can be summarized in a matrix form. For convenience, let

D ¼
h
D1
B D1

T D2
B D2

T

iT
(43)
Thus, Eq. (38) will develop into a unified formula, which can be defined as

A,
v2D

vq2
þ B,

vD

vq
þ C þ D,

vD

vε
¼ 0 (44)

Where,
A ¼

2
664
A 1 A 2 0 0
0 0 B 1 B 2
C 1 0 0 0
0 0 D 1 0

3
775 (45)

2
A 3 0 0 0

3

B ¼ 664 0 0 B 3 0

C 2 C 3 0 0
0 0 D 2 D 3

775 (46)

2
A 4

3

C ¼ 664B 4

C 4
D 4

775 (47)

2
0 Q1 þQ2 Q2sina �Q2cosa

3

D ¼ 664�Q2sina �Q2cosa 0 Q2

Q1 þQ2 0 �Q2cosa �Q2sina
�Q2cosa Q2sina Q2 0

775 (48)
Eq. (44) is the final pending equation which is a common linear partial differential form in mathematical model and it is
difficult to find a general solution. However, plenty of numerical solutions can be applied to solving this problem. In order to
demonstrate the solution, two key points have to be considered. The first is to apply a proper numerical form for Eq. (44). The
form should be conditional convergence which can ensure the accuracy of results. The second is to determine the value of
coefficients A, B, C and D. The calculation of these coefficients is of vital importance and will have substantial influence on the
stability of Eq. (44).

3.3. Numerical solution

Place a grid on the definition domain ℝ2 through the points with coordinates (qj,εn), where
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qj ¼ ðj� 1ÞDq; j ¼ 1;2;…; J;a>0
qj ¼ 2p� ðj� 1ÞDq; j ¼ 1;2;…; J;a<0
εn ¼ ðn� 1ÞDε; n ¼ 1;2;…;N;a>0

(49)
Applying finite difference method, the discretized form for differential terms is the following approximation:

v2Dðq; εÞ
vq2

¼ Dqþ1;ε � 2Dq;ε þDq�1;ε

Dq2
(50)

vDðq; εÞ Dqþ1;ε �Dq�1;ε
vq
¼

2Dq
(51)

vD Dq;ε �Dq;ε�1
_D ¼
vε

¼
Dε

(52)
The finite difference form of first order for terms of q and 4 are centered-difference and backward-difference respectively,
which are chosen as a guarantee to make the numerical system stable when the rate of step sizes is determined properly.

Moreover, in the formulas of coefficients A, B, C and D, these first and second derivatives also exist, which cannot be
calculated in each iterative processing. The quasi-linear solution is obtained, assuming these values are null in the first
iterative step, then attempting to use the previous step's formulas by substituting the step number ε�1 into Eqs. (50)e(52) to
replace current step's formulas, therefore all the coefficients will develop into known constants in each iterative step. The
final finite difference formula derived by Eq. (44) will be given by

Ej;n,Djþ1;n þ F j;n,Dj;n þ Gj;n,Dj�1;n þ Cj;n ¼ Hj;n,Dj;n�1 (53)

Where,
Ej;n ¼ A


q ¼ qj; ε ¼ εn

�
Dq2

þ B


q ¼ qj; ε ¼ εn

�
2Dq

F j;n ¼ �2
A


q ¼ qj; ε ¼ εn

�
Dq2

þ D


q ¼ qj; ε ¼ εn

�
Dε

Gj;n ¼ A


q ¼ qj; ε ¼ εn

�
Dq2

� B


q ¼ qj; ε ¼ εn

�
2Dq

Hj;n ¼ �D


q ¼ qj; ε ¼ εn

�
Dε

(54)
This formula can be simplified as the following matrix form which will be calculated in programming by iteration as the
final expression.

½K �½Dn� ¼ ½L�½Dn�1� � ½M�; ðn ¼ 2;3;…;NÞ (55)

Where,

½Dn� ¼
�
D2;n D3;n … DJ�1;n

T (56)

2
66664K
3
77775 ¼

2
66664
F2;n E2;n 0
G3;n F3;n E3;n

1 1 1
GJ�2;n F J�2;n EJ�2;n

0 GJ�1;n F J�1;n

3
77775 (57)

2
66664L
3
77775 ¼

2
66664
H2;n / 0

H3;n
« 1 «

HJ�2;n
0 / HJ�1;n

3
77775 (58)
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2
66664M

3
77775 ¼

2
66664

C2;n
C3;n
«

C J�2;n
C J�1;n

3
77775þ

2
66664

G2;n,D1;n
0
«
0

GJ�1;n,DJ;n

3
77775 (59)

[D1] and D1,n,DJ,n are the initial condition and boundary conditions respectively. For initial condition, [D1] is null, since the
bending behaviour begins with a straight configuration. Geometrical boundary conditions will be applied corresponding to
both two ends of armour wires' model, which are null since these points have no deformation.

The solution presented in the paper is suitable for all genres of flexible risers theoretically. Given a set of data, the slips,
stresses, forces and moments can be calculated for various cases. To validate this analytical model, a comparison will be
processed with the frictionless results obtained by Østergaard et al. [18] and the results including frictional effects by Leroy
and Estrier [17].

4. Case studies

4.1. Without frictional effects

If frictional effects are neglected, D will be zero in Eq. (44), the problem will degenerate into the following system of
ordinary differential equations

A,
v2D

vq2
þ B,

vD

vq
þ C ¼ 0 (60)
It is noted that the unknown quantity D is only controlled by parameter q. With several inputs of relative curvature ε, wire
slips D can be solved under various bending situations by two boundary conditions in which the slips corresponding to both
two ends of armour wires' model are null.

By means of software Mathematica and function NDSolve, which can find a numerical solution to the ordinary differential
equations, this problem can be solved directly without linearizing the differential terms A,B and C as previous illustration.

Since Østergaard et al. [18] investigated only one helical layer, to make a comparison, Eq. (60) can be expanded as the
following two equations

8>>>><
>>>>:

A 1,
v2DB

vq2
þ A 2,

v2DT

vq2
þ A 3,

vDB

vq
þ A 4 ¼ 0

C 1,
v2DB

vq2
þC 2,

vDB

vq
þC 3,

vDT

vq
þC 4 ¼ 0

(61)
Input data are as follows

A ¼ b,h ¼ 5,10mm2 ¼ 50mm2

r ¼ 0:2m; k/0:1m�1; E ¼ 2,1011Pa
The initial helical wire layer angle needs to be calculated by the pitch arc length Lpitch¼1m defined by Østergaard et al. [18].

a ¼ arctan
2pr
Lpitch

¼ 51:5+
Østergaard et al. [18] studied pure bending situation, as well as a wire on a cylindrical surface subjected to tension.
However, the value of the load in the axial direction of the cylinder was not given. In the comparison, considering pure
bending condition subjected to multiple relative curvature, the results presented in Figs. 5 and 6 are obtained.

It can be observed that both DB and DT have sinusoidal-like shapes versus q, and while the bending curvature increases
from pure bending, the slip DB increases significantly compared to DT. It means helical wires preferably tend to slide at
transverse direction rather than tangential direction.

Considering Eqs. (21)e(23), geodesic curvature Dkg, normal curvature Dkn and geodesic torsion Dtg can be derived by DB

and DT. Note that the results of DB and DT are discrete, therefore numerical method is needed to calculate the first-order and
second-order derivatives of DB and DT. Fig. 7 presented here enables comparison with Østergaard et al. [18].

Fig. 7 shows that both Dkn and Dtg matchwell with the results calculated in Ref. [18]. Themaximum amplitudes of Dkn and
Dtg are respectively in a range from 0.07 m�1 to 0.08 m�1. The precision data comparisonwill be shown in next part together



Fig. 5. Change of wire slip DB with no frictional effects.

Fig. 6. Change of wire slip DT with no frictional effects.

Fig. 7. Changes of wire curvature components, pure bending, k ¼ 0.1 m�1.
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with the frictional case study in tabular form. The analytical method developed in the present paper is reliable and can be a
good reference for theoretical discussion of the equilibrium state of one wire on a frictionless toroid.
4.2. With frictional effects

If frictional effects are included, the numerical calculation will be implemented by Eq. (44). The situation is that without
frictional effects an armour wire will have certain and only one position corresponding to bending cycles. However, the
frictional effects force the armour wires to move further and avoid it returning back to previous position. For this reason, the
research on how armour wires move subjected to bending cycles has great and important meaning.
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In Ref. [17], the flexible pipe is subjected to twenty repeated cycles of curvature from 1/R¼0 to 1/R¼0.1 m�1, and the
following input data were used:

E ¼ 2,1011Pa;A ¼ b,h ¼ 36mm2

a1 ¼ �35+;a2 ¼ 35+; r1 ¼ 78:3mm; r2 ¼ 83:8mm
f ¼ 0:15;Cycles : n ¼ 20

Since frictional forces are combined with contact pressure, it is needed to apply load in axial direction to tie up the several

layers. The flexible pipes will be subjected to both bending and tension, associated with the practical application. From
Ref. [17], load in axial direction of the flexible pipe is transformed into initial tangential forces of armour wires for both layer 1
and layer 2 which are defined as F1TðiniÞ and F2TðiniÞ. The inputs are

F1TðiniÞ ¼ 7500N; F2TðiniÞ ¼ 6300N

Considering Eqs. (15) and (16), F is the tangential force only under pure bending. When it is subjected to bending and
T

tension, the method is to add the values of F1TðiniÞ and F2TðiniÞ to the first equation of Eq. (15) for both two helical layers which
will be the correct and complete values of tangential forces.

In the section, calculation will be processed in the MATLAB programming environment.
Firstly, in order to study the response of helical wires, the displacements along two orthogonal directions will be

considered. Displacement DB and DT for two armour layers in half a cycle (from 1/R¼0 to 1/R¼0.1 m�1) are presented in Figs.
8e11. These figures show that both DB and DT have sinusoidal-like shapes versus qwhich are the same as the situationwith no
frictional effects due to periodicity.

Secondly, twenty cycles of bending behaviour are simulated. Themain purpose for applying twenty cycles is to observe the
changes of the helical wires due to repeated cycles. All geometrical and mechanical quantities hold linear relations with DB

and DT by linear expressions from Eqs. (21)e(23). The geodesic curvatures will be chosen to analyse the process in this part,
see Figs. 12 and 13.

In differential geometry, the geodesic curvature is a significant quantity which represents theminimum distance. That is, if
a curve's geodesic curvature is zero, the curve follows the minimum distance on the surface. In Figs. 12 and 13, the geodesic
curvatures are stable after several cycles, located right in the two symmetrical sides of zero geodesic curvature. This stable
situation can be a valid reference for fatigue analysis.

Thirdly, Figs. 14 and 15 show tangential stresses along internal and external helical wires only caused by pure bending,
from aminimum curvature (1/R¼0) to a maximum curvature (1/R¼0.1 m�1), for the first and 20th curvature cycles. Note that,
the axial stresses of armour wires are presented in many literature. Compared to the analytical model in Ref. [17], the am-
plitudes of data are both in a range of 50e60 MPa and 30e40 MPa for layer 1 and 2 respectively. Hence, reliability of quasi-
linear method proposed in the paper is certified.

According to Eq. (15), the stress can be deduced by strain g which has a linear expression with respect to DT in Eq. (16).
These figures present that compared with the variations of transverse displacements, changes of tangential displacements
during repeated bending are smaller. It means the helical wires are more likely to move transversely and the tangential slips
region is stable during repeated cycles of bending.

The fourth part is tomake a comparison by investigating the displacement changes along another local frame tq and t4, see
Fig. 16. Eq. (24) illustrates the relation between the two kinds of displacements.
Fig. 8. Change of wire slip D1
B for layer 1.



Fig. 9. Change of wire slip D1
T for layer 1.

Fig. 10. Change of wire slip D2
B for layer 2.

Fig. 11. Change of wire slip D2
T for layer 2.
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Fig. 12. Change of kg, internal layer.
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The data are mainly included here in order to ensure the accuracy of the results and all the figures mentioned abovematch
well with Leroy and Estrier [17].

In order to make precise comparison with other analytical model, the adequate data comparison with and without fric-
tional effects is shown in the following Table 1, including the main data of Figs. 7 and 16.

From Table 1, it is clear to figure out the main results between quasi-linear and original solution by Refs. [18] and [17]. The
result error is enough small to support feasibility of quasi-linear method. Moreover, compared to nonlinear method, quasi-
linear method shows a unified numerical implementation, which can be available for various cases in practical configurations,
and nonlinear method is needed to adjust the algorithms for every condition in case of the issue caused by instability.

Furthermore, in order to study some extended situations, different initial layer angles, initial tangential forces and friction
coefficients are applied to investigate the changes of slips. The initial tangential forces vary from 7500 N to 9500 N with an
increment of 1000 N. The different initial helical layer angles are determined by 35, 45, 55 C+. Meanwhile, 0.05, 0.10, 0.15 will
be chosen as three values of friction coefficients.

In this part, displacement DB in internal layer will be chosen as the typical example to show and represent the results since
all displacements exhibit similar motions, see Figs. 17 and 20.

These figures show some reasonable slip changes while applying different initial layer angles, initial tangential forces and
friction coefficients. In Figs. 17 and 18, if increasing loading initial forces or increasing the initial layer angle, the slip will
decrease. Meanwhile, in Fig. 19, when friction coefficient increases, the friction force will have a tendency to prevent helical
wires moving faster and the slips will also decrease. After several repeated cycles, the slips will tend to stabilize and the
friction coefficients show little influence on the final stable situation, see Fig. 20.

It is noted that during repeated cycles of bending, the tangential slips region is stable when applying various coefficients,
see Figs. 21 and 22. The displacement DT shows similarly incremental situation as for DB in the first cycle. However, after 20
cycles, the slips keep the same value. The situation is similar to the result of axial stresses in Figs. 14 and 15 which has few
changes after several cycles.

Considering bent flexible pipe, the slip behaviour is one of the key research objects since the accurate description is not
given in recent literature. There are several hypothesis models of armor wires slips such as axial slip model, loxodromic slip
model, geodesic slip model and others respectively in different references. In Ref. [17], the presumptive relation of two co-
ordinates (q, 4) and strain equation provide a link between mechanical quantities and armour layers slips, which can be used
to figure out every changing step of two armour layers slips. The unconstrained view is free for investigation. It is non-
essential to allow only one prescribed slip direction. The quasi-linear method proposed in this paper also adopts the
above mentioned solution for slip behaviour. Results exhibit a clear and profound changes of slips along the local frame (T, B)
for two armour layers, which can be a reliable reference for investigation of armour wires' movement in bending behaviour
study compared to other hypothetical slip model. Furthermore, the extended research indicates that some other factors
including initial layer angles, initial tangential forces and friction coefficients also have significant influence on the change of
slips.
5. Conclusion

In this work the bending behaviour of two helical layers of flexible risers with friction was presented. On basis of
geometrical and mechanical models, a system of quasi-linear partial differential equations was established to generate an
analytical solution. Numerical implementation was written in detail to formulate a unified method which will have a wide
range of applications in bending and fatigue behaviour research of flexible risers theoretically.



Fig. 13. Change of kg, external layer.

Fig. 14. Axial stress, internal layer.

Fig. 15. Axial stress, external layer.
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Two case studies have been investigated in the paper, including the theoretical discussions of the equilibrium state of
armour wires with and without frictional effects. The calculation in the study shows that the slips corresponding to bending
all have sinusoidal-like shapes versus the arc length s or parameter q and tend to be stable within a range in accordance with



Fig. 16. Trajectories of wire slip Dq and D4.

Table 1
Inputs of experiment data.

Model Without friction Amplitudes of
curvature (m�1)

With friction (Slips along frame (tq,t4), (mm))

Slip range, 20 cycle, layer 1 Slip range, 20 cycle, layer 2

Dkg Dkn Dtg Dq D4 Dq D4

Østergaard et al. [18] 0 ~ 0.05 0 ~ 0.06 0 ~ 0.05 /
Leroy and Estrier [17] / 0.10 ~ 0.80 0.60 ~ 0.95 �0.05 ~ 0.40 �2.00 ~ �1.50
Quasi-linear method 0 ~ 0.16 0 ~ 0.07 0 ~ 0.08 0.08 ~ 0.95 0.60 ~ 0.85 0.00 ~ 0.65 �2.20 ~ �1.40

Fig. 17. Change of D1
B, cycle 1.
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other analytical results. In addition, various initial layer angles, initial tangential forces and friction coefficients are applied to
investigate the change of slips. All the data and results can be a satisfactory reference for future study of bent helical wires.

Although the study presented in this paper found evidence for predicting repeated bending behaviour, from the data
collected it was not possible to determinewhen the slip exactly occurs and point out the direction of slips for both two armour
layers. Further studies are therefore necessary to study the principle of slippage and separate the region before and after slip
to improve the frictional model. Meanwhile, the quasi-linear method proposed in the paper is apparently sensitive to the
initial conditions, and accuracy cannot be certified specifically when simplifying all equations into a quasi-linear system. The
disadvantages mentioned above are exactly in need of improvement. Furthermore, the bending problem only includes the
contribution from tensile armour layers, the reliable prediction of bending stiffness for multiple layers is needed to be
investigated in the future.



Fig. 18. Change of D1
B, cycle 1.

Fig. 19. Change of D1
B, cycle 1.

Fig. 20. Change of D1
B, cycle 20.
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Fig. 21. Change of D1
t , cycle 1.

Fig. 22. Change of D1
t , cycle 20.
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