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Accurate 3D object detection is limited by the sparsity of LiDAR-based point clouds. The vertical distribution char-
acteristics (VDCs) of point clouds in pillars are robust to point-sparsity and provide informative semantic infor-
mation on objects. Based on this, we propose a novel 3D object detection framework where the VDCs of point
clouds are exploited to optimize feature extraction and object augmentation. More specifically, a Spatial Feature
Aggregationmodule is proposed to perform robust feature extraction by decorating pillarswith theVDCs. To spa-
tially enhance semantic embeddings, we employ VDCs to construct a voxelized semantic map, acting as an addi-
tional input stream.Moreover, we develop an Adaptive Object Augmentation (AOA) paradigm,which adopts the
VDC searching of suitable ground regions to “paste” virtual objects, thus avoiding conflicts with new scenes. Ex-
tensive experiments on the KITTI dataset demonstrate that our framework can significantly outperform the base-
line, achieving 3.74%/1.59% moderate AP improvements on the Car 3D/BEV benchmarks with 38 FPS inference
speed. Furthermore, we prove the stable performance of our AOA module across different detectors.

© 2022 Elsevier B.V. All rights reserved.
1. Introduction

LiDAR-based 3D object detection is a core component of environ-
ment perception systems for autonomous driving [1]. Given the sparsity
and unevenness of point clouds, voxel-based methods strive to regu-
larly organize point clouds through voxelization for efficient data pro-
cessing. To effectively encode each voxel, the majority of voxel-based
methods focus on the extraction of point cloud structural information
[2–6], such as point-interactive features. However, the quality of these
point-interaction features decreases with the gradual sparseness of
the point clouds, which limits the detection performance accuracy.

A potential solution for the point-sparsity problem is to explore the
overall distribution of point clouds rather than the information at the
point-level, for example, employing the vertical distribution character-
istics (VDCs) (i.e., maximum value (Max), minimum value (Min),
mean value (Mean), and standard deviation (STD) of the point cloud
z-axis coordinates) to decorate the pillars. We observe that the VDCs
are insensitive to point-sparsity. It can also provide informative seman-
tic information related to objects. As demonstrated in Fig. 1, the STD de-
scribes the difference between the ground and target region (where
objectsmay exit),while other items in VDCs further indicate the specific
differences in vertical space occupation of different objects (e.g., cars,
hai, China.
buildings, and trees). These properties suggest the ability of VDCs to
enhance feature extraction.

Moreover, the potential of VDCs in identifying the ground region al-
lows us to further perform effective object augmentation in the training
process. In real scenes, the objects should ideally be “pasted” on the
ground. However, previous object augmentation methods [4] only
copy-paste virtual objects from one scene into another, resulting in
the pasted virtual object conflicting with the new scene. Fig. 2 reveals
a conflict between pasted object #1 and the building, while pasted ob-
ject #2 is located in the completely occluded region. This will undoubt-
edly hinder the recognition of objects.

Based on those investigations, we propose 3D-VDNet, a novel 3D ob-
ject detection framework, to leverage the VDCs of point clouds for ro-
bust feature extraction and adaptive object augmentation. More
specifically, a Spatial Feature Aggregation (SFA) module is designed to
perform robust pillar feature extraction, whereby the pillars are deco-
rated with VDCs to supplement the point-interactive features. More-
over, a voxelized semantic map is employed as an additional input to
spatially enhance the semantic embedding of objects. This is performed
by classifying each pillar into ground, target, and free (without point
clouds) regions according to their VDCs. The pillar features and seman-
tic maps are fed into the 2D Backbone and Detection head described in
PointPillars [5] and the detection results are then output. Furthermore,
we present an Adaptive Object Augmentation (AOA) paradigm that em-
ploys VDCs to adaptively search suitable ground regions to place virtual
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Fig. 1. Examples of point cloudVDCswithin pillars. To aid visualization, a large voxel size of 1� 1� 4m is usedand inner point clouds are colored.G is the groundpillar; I is the target pillar;
I1 and I2 are cars; and I3 represents buildings.

Fig. 2. Two problems of the copy-paste approaches employed by the previous object augmentation methods [4].
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Fig. 3. Proposed 3D object detection framework. The three major components: (a) Spatial Feature Aggregation; (b) Semantic Map Generation; and (c) Adaptive Object Augmentation, all
benefit from VDCs. Specifically, (a) encodes VDCs for robust and discriminative feature extraction. (b) employs VDCs to construct a voxelized semantic map for enhancing semantics em-
bedding. Both the pillar and semantic feature maps are concatenated and pass through the Backbone & Detection head for prediction. During training, (c) adaptively augments virtual
objects using the VDCs.
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objectswith the aim of avoiding conflicts with new scenes. Fig. 3 depicts
the overall structure of the 3D-VDNet.

To evaluate the effectiveness of our method, we conduct extensive
experiments on the challenging KITTI dataset. Results demonstrate our
approach to significantly outperform the baseline, achieving 3.74% and
1.59% moderate (mod.) AP improvements on the Car 3D and bird’s
eye view (BEV) benchmarks, respectively. The key contributions of
this work are summarized in the following.

(1) By leveraging the point cloud VDCs, we design a Spatial Feature
Aggregation module that fuses the vertical distribution and point-
interactive features to allow for robust feature extraction.

(2) The VDCs are further utilized to create a voxelized semantic map
as a further input, which enhances the semantic embedding of the
objects.
(3) An adaptive object augmentation paradigm is proposed to over-
come the conflict between augmented objects and corresponding
scenes via the point cloud VDCs.
(4) Extensive experiments demonstrate the effectiveness of the
point cloud VDCs. In addition, the proposed AOA module can act as
a plug-and-play component,with a stable performance across detec-
tor types (voxel- or point-based).

2. Related work

2.1. LiDAR-based 3D object detection

LiDAR-based 3D object detection can generally be categorized into
point- and voxel-based methods. [7] provides a comprehensive intro-
duction of LiDAR-based 3D object detection approaches, below we de-
scribe the two methods in detail.

Point-based Methods. For the powerful feature learning capability of
PointNet/PointNet++ [8,9] in the classification and segmentation do-
main, several studies have provided extensions to point-based 3D ob-
ject detection. F-PointNets [10] and IPOD [11] obtain 2D results to
crop point clouds and subsequently following the implementation of
PointNet to aggregate features for 3D bounding box (bbox) predictions.
PointRCNN [12] is a pioneering framework that avoids relying on 2D re-
sults, rather it employs PointNet++ to directly generate 3D proposals
from the raw point cloud. STD [13] attempts to refine the bounding
boxes (bboxes) in a sparse-to-dense manner. VoteNet [14] implements
the deep Hough voting strategy to improve the feature aggregation of
the object. Due to the irregularity of point clouds and the large amounts
of data, point-based methods are computationally expensive, while our
method follows the voxel-based setting.
3

Voxel-based Methods. To effectively process the sparse and irregular
data of the point cloud, the majority of existing studies attempt to reg-
ularly organize the point cloud via voxelization and the subsequent im-
plementation of advanced 2D/3D convolutional neural networks (CNN)
for predictions [15]. VoxelNet [4] is the first end-to-end learning frame-
work that unifies feature extraction and bbox prediction using 3D CNN.
However, the 3D convolutional layer proves to be computationally ex-
pensive. Based on the sparsity of non-empty voxels, SECOND [4] intro-
duces 3D sparse convolution to improve the processing efficiency of
the 3D voxel. Furthermore, PointPillars [5] removes the 3D CNN opera-
tion by simplifying SECOND, dynamically converting point clouds into
pillars to construct a 2D pseudo image. Inspired by the conversing of
point clouds into pillars by PointPillars, our work further explores the
VDCs of point clouds in order to perform robust feature extraction and
adaptive object augmentation. Several recent studies [16,17] merge
voxel- and point-wise features to generate more informative 3D fea-
tures compared to previousmethods. However, they are two-stage net-
works that require more computing resources compared to our
proposed one-stage detector.

2.2. Representation learning on voxels

Several traditional methods employ handcrafted features to repre-
sent voxels. For example, [18,19] uses six statistical quantities to encode
non-empty voxels, while [20–22] encodes each voxel as occupancy,
truncated signed, or binary. These handcrafted features are typically de-
signed for specific scenarios and tasks, and thus may not be generaliz-
able to variable environments such as autonomous driving. VoxelNet
utilizes a tinny PointNet to generate learned features for each voxel,
whereby the point cloud is initially decorated with coordinate ðx, y, zÞ,
intensity r, and distance from the cluster center ð△xc,△yc,△ycÞ. Due
to the great flexibility of PointNet to generate point-wise features for
voxel representation, the majority of voxel-based studies adopt similar
strategies [3–5], yet the point decoration is distinct. For example,
PointPillars includes the distance from the pillar center ð△xp,△ypÞ to
standardize the local background of the point. These methods focus on
extracting point-interactive features to represent voxels, and the quality
of these features varies with the point cloud sparseness. Our proposed
SFA module extracts robust features by introducing the VDCs.

Recently, WYSIWYG [2] proposed a new form of voxel representa-
tion that employs the raycasting mechanism, labeling each voxel with
visibility to distinguish between the lidar-perceived and obscured re-
gions. In contrast, our method employs VDCs to label each pillar as a
ground, target, or free region. This is computationally friendly and
provides semantic clues to facilitate object detection.
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2.3. 3D object augmentation

3DObject augmentation, a novel form of data augmentation that en-
riches data training, was initially proposed in SECOND [4]. This technol-
ogy is currently widely employed in state-of-the-art detectors [2,4,5,12,
13,17], significantly improving convergence speed and performance.
However, its copy-pastes technique may result in the overlapping of
the augmented objects with those in the new scene (e.g., buildings
and trees), thus hindering object recognition. Recently, WYSIWYG [2]
used the raycasting principle to remove the point cloud that blocks
the augmented 3D object to make it satisfy the visibility reasoning.
Since the nature of this method is still a copy-pastes manner, and
hence the overlap between the augmented object and new scene in
the vertical direction is still unavoidable. In the current paper, we pro-
pose a simple and yet reasonable VDC-based object augmentation
method that adaptively searches suitable ground regions to augment
the target objects.

3. 3D-VDNet detector

In this section,we first introduce the preliminaries of pillar-based 3D
object detection and subsequently describe the proposed framework.

3.1. Preliminaries

Based on the PointPillars settings, the input LiDAR point clouds with
initial features f i ¼ fx, y, z, rg are voxelized into pillars of size
D� P � N, where D denotes the point dimension, P indicates the num-
ber of non-empty pillars, and N is the number of points in each pillar.
For each non-empty pillar, if the number of inner points is greater
than N, then random sampling is performed, while if it is less than N,
zero-padding is applied.

Each point pi within the pillar v j is augmented with interactive
features as follows:

f pointi ¼ Δxc;Δyc;Δzc;Δxp;Δyp
n o

; ð1Þ

where subscript c denotes distance to the arithmetic mean of all points
in the pillar and subscript p indicates the offset from the pillar center.
These point-wise features are aggregated in a pillar by employing a
tinny PointNet (TPN) to obtain learned pillar-wise point-interactive fea-
tures f interactive of size Ci � P, where

f interactive ¼ TPN f i ∪ f pointi

� �
j∀pi ∈ vj

n oP�1

j¼0

� �
: ð2Þ

The point-interactive features are then scattered back to the original
pillar locations through mapping function Fs to create a pillar feature

map Finteractive of size Ci � H �W , where H and W indicate the height
and width of the BEV point cloud range.
Fig. 4. Illustration of the spatial f
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Finally, the obtained pillar featuremap Finteractive passes through a 2D
CNN backbone network and detection head for classification confidence
predictions and 3D bbox regression.

3.2. Overall framework

Our framework builds on pillar-based 3D object detection (Fig. 3),
whereby the input point clouds are voxelized into pillars. The Spatial
Feature Aggregationmodule is then used to encode each non-empty pil-
lar as points and VDCs to produce a pillar feature map. As an additional
input stream, the VDCs are employed to initially label each pillar as a
ground, target, or free region, constructing a semantic feature map.
Two feature map types are subsequently concatenated and pass
through the Backbone & Detection head for confidence prediction and
bbox regression. During training, the raw point cloud is adaptively aug-
mented with the virtual objects via our proposed object augmentation
paradigm, where the VDCs serve as an indicator.

3.3. Spatial feature aggregation

The accurate regression and classification of 3D objects from
point clouds rely on a robust and discriminative feature extraction.
The point-interaction features preserve the fine information, while
the quality is reduced with the gradual sparseness of point clouds.
In contrast, the pillar VDC is robust to the sparsity of the point
cloud, yet it is considered as “rough”. This motivates us to fuse both
approaches (Fig. 4).

We denote Fv∈fSTD;Mean;Min;MaxgðfpðzÞi gni¼1Þ as a statistical function em-

ployed to calculate the point cloud VDCs in a pillar, where pðzÞi is the z-
axis coordinate of a point and n is the number of points (we set
FSTD ¼ 0, when n ¼ 1). As described in Section 3.1, pillars with sparse
points will undergo zero-padding during the voxelization process,
which consequently affects the true value of the VDCs. Therefore, we
employ a recorded number of non-zero points n j to restore the real
points in a pillar. A fully connected network (FCN) consisting of a linear
layer, a batch normalization (BatchNorm) layer, and a rectified linear
unit (ReLU) layer is used to extract the vertical distribution feature

f distribution of size Cd � P from the VDCs, where

f distribution ¼ FCN Fv∈fSTD;Min;Max;Meang pðzÞi

n on j�1

i¼0

� �� �P

j¼1

 !
: ð3Þ

The vertical distribution and point-interaction features are
concatenated to produce a pillar feature map of size ðci þ cdÞ � H �W
(Fig. 4), where ðci þ cdÞ are the total feature channels. Hyperparameter
p ¼ ci=cd controls the proportion of the two types of feature channels
(see Section 4.4.1 for more details on the ablation study).

Through the proposed SFA module, we are able to extract more ro-
bust and discriminative featureswith fine and rough spatial characteris-
tics for the accurate prediction of bboxes and precise classification.
eature aggregation module.



Fig. 5. Relationship between (a) raw point clouds and (b) voxelized semantic map. Blue, red, and black grids denote ground, target, and free regions, respectively.
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3.4. Semantic map generation

The pillar VDC can help to determine the potential location of objects
from a large point clouds scene. Therefore, we construct a voxelized se-
mantic map by labeling each pillar as a ground, target, or free region
(Fig. 5), which consequently generate semantic map feature improving
the object discrimination feature capability.

Specifically, let vði,jÞ ¼ fpig denote a pillar with index ði, jÞ in the
pseudo-image. For non-empty pillars, we can use a threshold tstd to label
them as ground or target regions due to the significant difference in STD
between thepoint clouds of these regions (Fig. 1). Emptypillars are labeled
as free regions. Therefore, the initial label L of pillars can be described as:

L ¼
ground, if 0 ⩽ FðzÞSTD vi,j

� 	
⩽ tstd

target, if FðzÞSTD vi,j
� 	

>tstd
free, if vi,j is empty

,

8>><
>>: ð4Þ
Fig. 6. Illustration of the label rectification module. (a) Initial pillar labels. (b) Collection of gro
Through such a process, a few incorrectly classified ground pillars in GT bboxes (blue grids) ar
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where the threshold tstd is set as 0.01. However, a few non-empty pillars
near the object center are incorrectly classified as ground pillars (Fig. 6
(a)). Although the point clouds close to the object center and the ground
point clouds are observed to have a similar distribution, i.e., little vary-
ing on the z-axis, their vertical spatial occupations are distinct. To this
end, we designed a label rectification sub-module to rectify the pillar la-
bels. More specifically, we customize a k� k filter to collect those
ground pillars Lg that are close to the target pillars (Fig. 6(b)). Height
threshold tmax is then employed to select potential target pillars (Fig. 6
(c)) from the collected ground pillars:

Lg ¼ target, if FðzÞMax vi,j
� 	

⩾ tmax

ground, otherwise
:

(
ð5Þ

In practice, we implement this process efficiently through a
convolutional operation, whereby threshold tmax is selected as the aver-
age height of the GT bbox centers in val set.
und pillars Lg close to the target pillars by the customized filter. (c) Rectified pillar labels.
e rectified as potential target pillars (yellow grids).



Fig. 7. The schematic diagram of the adaptive object augmentation module.
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The 2D spatial size of the voxelized semantic map coincided with
that of the pillar feature map, allowing for its incorporation into our de-
tector via several potential options. For example,we can directly concat-
enate and feed the semantic map into a backbone network; this is
simple. Another strategy is to employ a one-layer FCN or CNN to obtain
the semantic feature map prior to concatenating the pillar feature map.
Our lightweight SemanticMapGeneration (SMG)module is able to spa-
tially enhance the semantic embedding concisely. The SMG module is
discussed in more detail in Section 4.4.2.

3.5. Adaptive object augmentation

Prior studies augment virtual objects in a copy-paste manner, ig-
noring the new scene structure. As illustrated in Fig. 2, the pasted vir-
tual object may overlap with a wall or may be placed in a completely
occluded region, thus hindering object recognition. For autonomous
driving scenarios, we expect that the augmented object is only
Algorithm 1 Adaptive Object Augmentation.

6

“pasted” on the ground region, which has the following advantages:
1) the augmented object does not conflict with the new scene; and
2) the surroundings of the augmented object contain appropriate
context information to benefit object detection. However, determin-
ing a suitable ground region to “paste” the virtual object without the
point cloud semantic information proves to be a difficult task.

As the VDCs can identify the ground region, we can use them to
determine whether the region is suitable for augmenting virtual ob-
jects. To obtain the VDCs of a sampled location, we enlarge the sam-
pled ground truth (GT) bbox (without the sampled points) into a
large “pillar” along the z-axis that is then used to collect the point
clouds for the VDC calculation. Following this, we must determine
how to “paste” the sampled GT bboxes. As the global rotation of a
bbox will not change its relative position to the sensor, we can
apply this to generate bbox copies, which can evenly cover the effec-
tive point cloud range. The schematic diagram of the AOAmodule de-
picts in Fig. 7.
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Algorithm 1 details the adaptive object augmentation paradigm. In
Lines 1 to 3, we rotate the sampled GT bboxes G around the sensor to
the left boundary of the point clouds and subsequently rotate and paste
them clockwise at fixed angular intervals until the whole point cloud
range is covered. Following this, we select candidate boxes C from pasted
boxes P according to the following criteria (Lines 4 to 9): 1) donot overlap
the GT bboxes; 2) on the ground region; and 3) contains appropriate con-
text information (at least tn points in the ground region). Here, using the
STD value in the VDCs as an indicator can effectively distinguish the
ground region as the enlarged bbox contains a large point cloud range
compared to the unit pillar. For each sampled GT bbox S½j�, we find the
corresponding copies B j from the candidate bboxes C and select one as
the final resampled GT bbox R½i� (Lines 10 to 25).

This simple yet effective process allows for the sampledGTbboxes to
be pasted to a more suitable ground region, achieving adaptive object
augmentation in the new scene. Furthermore, this object augmentation
paradigm does not require any preprocessing, ensuring suitability for
both point- and voxel-based detectors. Section 4.4.3 provides more
details of the experiments.

3.6. Loss function

We employ the same loss function as SECOND [4] and PointPillars
[5]. In particular, the object classification adopts focal loss Lcls, with
α ¼ 0:25 and γ ¼ 2 as recommended by [23], while the localization re-
gression adopts smooth L1 loss Lloc (i.e., Huber loss), with σ ¼ 3:0. Fur-
thermore, the cross-entropy loss Ldir is used for the direction
classification. The objective of the three tasks is therefore

Llotal ¼
1

Npos
β1Lcls þ β2Lloc þ β3Ldirð Þ ð6Þ

whereNpos is the number of positive anchors and β are the constant fac-
tors of loss terms. We set β1 ¼ 2:0,β2 ¼ 1:0 and β3 ¼ 0:2.

4. Experiments

We evaluate the proposed 3D-VDNet on the challenging KITTI 3D/
BEV detection benchmark [24]. In this section, we first introduce the
dataset, evaluation metrics, and the implementation of our method
Fig. 8. Details of the backbone network. I, O, K, S, and P denote in
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and subsequently compare the proposed 3D-VDNet with state-of-the-
art 3D detection methods. Furthermore, we perform extensive ablation
studies to investigate the individual components of our methods.

4.1. Datasets and evaluation

The KITTI 3D object detection benchmark contains 7,481 annotated
LiDAR point clouds with 3D bboxes for training and 7,518 LiDAR point
clouds for testing. The training samples are divided into train split
(3,712 samples) and val split (3,769 samples) following the common
protocol described in [25,26]. The ablation studies are performed on
this train/val split with the most commonly used Car class. For a fair
comparison on the test set, we train the model on re-split train/val
sets according to [5]. We use average precision (AP) based on 40 recall
positions with an (IoU) threshold of 0.7 as an evaluation metric follow-
ing the official KITTI evaluation protocol. We adopt themean AP (mAP)
to evaluate the overall performance of the three difficulty levels (easy,
moderate, and hard).

4.2. Implementation details

Pre-processing. To align the network input, we set the point cloud
range as [0, 69.12], [−39.68, 39.68], [−3, 1] and the voxel size as
(0.16, 0.16, 4) m along the x, y, and z-axes, respectively. We remove
the points that are invisible in the image view. Through voxelization,
each non-empty pillar resample contains 32 points.

Network details. Our SFA module operates over each non-empty pil-
lar to produce a 64-d feature vector in which the proportion of the
point-interactive and vertical distribution feature channels is 40/24.
This feature vector is then scattered back to the original pillar locations,
generating a 64� 432� 496 pillar feature map. The SMGmodule takes
the VDCs of pillars as the input and transforms them into pillar labels. A
single-layer CNN (3� 3 convolution layer followed by BatchNorm and
ReLU) is then adopted by SMG to generate a 32� 432� 496 semantic
feature map. Two feature map types are subsequently concatenated
into a 96� 432� 496 feature map and pass through the Backbone net-
work. The backbone network consists of three blocks of fully
convolutional layers as for PointPillars. Each block has convolutional
layers and deconvolutional layers. Fig. 8 details the backbone network.
Other network settings follow PointPillars.
put channel, output channel, kernel size, stride, and padding.



Table 1
3D object detection performance on the KITTI test set. “L”, “I” and “I+ L” indicate the application of LiDARpoint clouds, RGB images, and a fusion of the two, respectively. Numbers in italics
denote the optimal results for one-stage detectors, while numbers in bold highlight the best-performing detectors.

Method Input Stage FPS(HZ)

3D Detection BEV Detection

Easy Mod. Hard Easy Mod. Hard

MV3D [25] I+L Two 2.8 74.97 63.63 54.0 86.62 78.93 69.8
AVOD [32] I+L Two 10.0 83.07 71.76 65.73 90.99 84.82 79.62
F-PointNet [10] I+L Two 5.9 82.19 69.79 60.59 91.17 84.67 74.77
F-ConvNet [33] I+L Two 2.1 87.36 76.39 66.69 91.51 85.84 76.11
MMF [31] I+L Two 12.5 88.4 77.43 70.22 93.67 88.21 81.99
PointRCNN [12] L Two 8.9 86.96 75.64 70.7 92.13 87.39 82.72
Fast Point R-CNN [17] L Two 15.0 85.29 77.4 70.24 90.87 87.84 80.52
Part A2 Net [30] L Two 14 87.81 78.49 73.51 91.7 87.79 84.61

ComplexYOLO [34] L One 15.6 55.93 47.34 42.6 77.24 68.96 64.95
VoxelNet [3] L One 4.4 77.82 64.17 57.51 87.95 78.39 71.29
SECOND [4] L One 20.0 83.34 72.55 65.82 89.39 83.77 78.59
PointPillars [5] L One 42.4 82.58 74.31 68.99 90.07 86.56 82.81
SARPNET [6] L One - 85.63 76.64 71.31 92.21 86.92 81.68
ContFuse [35] I+L One 16.7 83.68 68.78 61.67 94.07 85.35 75.88

3D-VDNet L One 38.0 87.13 78.05 72.9 91.72 88.15 84.65

Table 2
Performance of the proposedmethodwith different configurations. The 3D/BEV detection AP on Car class for easy,moderate, and hard subsets on KITTI val split is reported. AOA, SMG, and
SFA refer to the Adaptive Object Augmentation, Semantic Map Generation, and Spatial Feature Aggregation modules, respectively.

AOA SMG SFA ATSS 3D Detection (Car) BEV Detection (Car)

Easy Mod. Hard Easy Mod. Hard

(a) 87.94 78.63 75.81 91.7 87.89 86.81
(b) ✓ 88.44/+0.5 79.46/+0.83 78.16/+2.35 94.04/+2.34 88.87/+0.98 88.16/+1.35
(c) ✓ 88.41/+0.47 80.4/+1.77 77.76/+1.95 92.19/+0.49 88.82/+0.39 87.45/+0.64
(d) ✓ 87.69/−0.25 80.33/+1.7 77.64/+1.83 92.01/+0.31 89.71/+1.82 87.56/+0.75
(e) ✓ ✓ 89.36/+1.42 80.72/+2.09 78.11/+2.3 93.83/+2.13 90.12/+2.23 87.83/+1.02
(f) ✓ ✓ ✓ 89.34/+1.4 81.14/+2.52 78.57/+2.76 93.39/+1.69 90.09/+2.2 87.97/+1.16
(g) ✓ ✓ ✓ ✓ 90.15/+2.21 81.66/+3.03 78.97/+3.16 94.12/+2.42 90.71/+2.82 88.35/+1.54
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Training and inference details.Weadopt the Adamoptimizer [27] and
one-cycle scheduler [28]with amaximum learning rate of 3e-3, division
factor of 10, momentum range of [0.95, 0.85] and weight decay of 0.01.
We employ the regression target assignment strategy of ATSS [29]. We
train all our models for 85 epochs with a batch size of 16 that is equally
distributed on 4 GPU cards (1080Ti). For inference, we filter out the
low-confidence bboxes with a threshold equal to 0.3. Finally, we apply
the rotated NMS with a threshold of 0.01 to remove redundant boxes
and generate the final 3D detection results.

Data augmentation. In addition to the proposed adaptive object aug-
mentation strategy, we adopt an additional three data augmentation
strategies on the KITTI dataset to prevent overfitting: 1) randomly flip-
ping along the x-axis; 2) randomly rotating around the z-axis with the
range ½ �π=4,π=4�; and 3) rescaling with a scale factor sampled from
[0.95, 1.05].
4.3. Main results

To facilitate comparisonswith other state-of-the-art approaches, we
submit the results of our 3D-VDNet to the KITTI test server1 (Table 1).
Our approach is observed to outperform the baseline by a large margin.
More specifically, our model leads the PointPillars [5] by (4.55%, 3.74%,
3.91%) AP in the 3D detection and (1.65%, 1.59%, 1.84%) AP in the BEV
detection. Under the “moderate” difficultly level, our method surpasses
all the one-stage and the majority of the two-stage approaches, includ-
ing SHAPNET [6] (by 1.41%AP) and PointRCNN [12] (by 2.41% AP) in the
3D detection. In the BEV detection, our method exceeds all LiDAR-only

approaches, for example the two-stage approach Part A2 Net [30] by
1 http://www.cvlibs.net/datasets/kitti/eval_object.php?obj_benchmark=3d.
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0.36% AP. 3D-VDNet is still able to maintain a comparable performance
to the state-of-the-artmulti-sensors two-stagemethodMMF [31] in the
3D/BEV detection (78.05% vs 77.43%/88.15% vs 88.21%). For the “hard”
level cases, our method suppresses all other approaches in the 3D/BEV

detection,with the exception of Part A2 Net in the 3D detection. This in-
dicates the effectiveness of our proposed feature extraction strategy and
the reasonable adaptive object augmentation paradigm. In addition, our
3D-VDNet can run at 38 FPS which is faster than most of the methods.
Fig. 11 presents exemplary qualitative results, demonstrating the effec-
tiveness of our method.

4.4. Ablation studies

We conduct a comprehensive analysis of the effectiveness of our
proposedmodules. As reported in Table 2, each proposedmodule signif-
icantly outperforms its counterpart (b, c, d), and their combinations (e,
f) booms the baseline (a) by a large margin. Moreover, the introduced
ATSS target assignment strategy further improves the final performance
(g). In the following, we describe the ablation details of each proposed
module.

4.4.1. Effect of spatial feature aggregation module
We present two types of VDC encoding strategies while maintaining

all other settings the same as in the previous experiments. In Table 3,
VFE refers to the voxel feature encoding layer described in [4,5], which
employs a TPN layer product point-interactive features. VFE+VDCs de-
notes the fusion of the VDCs to each initial feature f i ¼ fx, y, z, rgwithin
a pillar, and then a TPN layer is employed to generate enhanced point-
interactive features. To achieve this, the 1D vector VDCs needs to ex-
pand from ð1, 4Þ to ðn, 4Þ, wheren is the number of pointswithin a pillar.

http://www.cvlibs.net/datasets/kitti/eval_object.php?obj_benchmark=3d


Table 3
Effect of several feature encoding strategies.

Method 3D Detection (Car) BEV Detection (Car)

Easy Mod. Hard Easy Mod. Hard

Ours w VFE 88.6 79.82 78.66 92.76 89 88.3
Ours w VFE + VDCs 88.39 79.71 78.67 93.91 88.89 88.26
Ours w SFA 90.15 81.66 78.97 94.12 90.71 88.35

Table 4
Effect of several semantic map generation strategies. SMG (raw): raw voxelized semantic
map; SMG (FCN): semantic feature map generated by an FCN layer; and SMG (CNN):
semantic feature map generated by a CNN layer.

Method 3D Detection (Car) BEV Detection (Car)

Easy Mod. Hard Easy Mod. Hard

Ours w SMG (raw) 88.87 79.53 76.78 92.85 88.69 87.94
Ours w SMG (FCN) 88.74 81.58 78.98 92.6 90.6 88.4
Ours w SMG (CNN) 90.15 81.66 78.97 94.12 90.71 88.35

Table 5
Effect of label rectification sub-module in SMG. Hyperparameter k represents the size of
the customized convolution kernel.

Method 3D Detection (Car) BEV Detection (Car)

Easy Mod. Hard Easy Mod. Hard

Ours w/o LR 88.33 80.77 78.34 92.32 88.56 87.84
Ours w LR (k ¼ 3) 88.66 81.35 78.85 92.51 88.77 88.0
Ours w LR (k ¼ 5) 90.15 81.66 78.97 94.12 90.71 88.35
Ours w LR (k ¼ 7) 90.01 81.0 78.62 93.66 89.78 88.07

Table 6

Effect of different voxel size v on semantic information representation. v ¼ 0:162 is the
default setting of our experiments.

Method 3D Detection (Car) BEV Detection (Car)

Easy Mod. Hard Easy Mod. Hard

Ours (v ¼ 0:12) 90.96 81.89 79.41 93.15 90.39 88.37

Ours (v ¼ 0:122) 90.58 82.27 79.69 93.05 89.25 88.66
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In SFA, an additional FCN layer is employed to encode the VDCs to gen-
erate the vertical distribution features. This is then concatenated with
the point-interactive features. The proportion of the two feature chan-
nels is set as p ¼ 40=24. The results in Table 3 demonstrate that using
an additional FCN layer to encode the VDCs (SFA) can better explore
the potential of the VDCs.

Furthermore, we reveal the importance of the vertical distribution
features obtained from the VDCs by adjusting proportion p. The optimal
combination for the 3D and BEVdetections is observed asp ¼ 40=24. No
significant reductions are observed in the performance when the pro-
portion is gradually reduced to p ¼ 8=56 (Fig. 9). A significant decline
is observed when completely replacing the point-interactive features
with the vertical distribution features ðp ¼ �=64Þ. This may be attrib-
uted to the lack of location information (i.e., x and y) contained in the
VDCs. Therefore, we employ both the pillar center ðx, yÞ and the VDCs
as the FCN input to obtain the enhanced vertical distribution features,
denoted as ðp ¼ �=64′Þ. The fusion of our approach with SFA
(p ¼ �=64′) outperforms that with SFA (p = 64/−), i.e., VFE, further
confirming that the vertical distribution features provide sufficient crit-
ical information for object detection.
Ours (v ¼ 0:142) 89.99 81.64 79.05 92.87 90.33 88.33

Ours (v ¼ 0:162) 90.15 81.66 78.97 94.12 90.71 88.35

Ours (v ¼ 0:182) 87.95 80.39 78.02 93.82 89.94 87.97

Ours (v ¼ 0:22) 88.66 78.91 77.35 93.04 89.74 87.65
4.4.2. Effect of semantic map generation module
We present three types of semantic map generation strategies.

Table 4 reports the performance of our approach fusedwith these strat-
egies. The learned semantic feature map (through CNN or FCN) is ob-
served to be superior to directly use the raw voxelized semantic map.
Moreover, integrating our approach with SMG (CNN) is slightly better
than with SMG (FCN). This is attributed to the enhancement of the fea-
ture representation ability due to the convolution operation with a
Fig. 9. Performances of SFAmodule for varying proportion p on KITTI val. p ¼ 40=24 denotes the
64/−, i.e., VFE, denotes only using the point-interactive featureswhile p ¼ �=64 denotes only u
distribution features that include location information.
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proper receptive field. Table 5 investigates the effectiveness of the
label rectification (LR) sub-module in the SMG. The fusion of our ap-
proaches with the LR sub-module outperforms the corresponding ap-
proaches without the LR sub-module, and with k ¼ 5 achieving the
point-interactive and vertical distribution feature channels of 40 and 24, respectively. p=
sing the vertical distribution features. Special case p ¼ �=64′ denotes the enhanced vertical



Table 7
Effect of different thresholds in the adaptive object augmentation paradigm.
Hyperparameter tn represents the maximum number of background point clouds
wrapped by the enlarged GT bbox. AOA (tn ¼ 0): no background point clouds.

Method 3D Detection (Car) BEV Detection (Car)

Easy Mod. Hard Easy Mod. Hard

Ours w AOA (tn ¼ 0) 89.01 81.29 78.82 92.83 90.37 88.28
Ours w AOA (tn ¼ 5) 90.15 81.66 78.97 94.12 90.71 88.35
Ours w AOA (tn ¼ 10) 89.79 80.98 78.59 92.59 89.98 88.17
Ours w AOA (tn ¼ 15) 88.37 79.62 76.9 92.64 88.88 88.12
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optimal performance. This is consistent with our expectation that recti-
fying themisclassification of pillars within an object is conducive to per-
formance improvements.

We also investigate the effect of voxel size on semantic information
representation. As shown in Table 6, appropriately reducing the voxel
size can slightly improve the detection performance while increasing

the computational cost. As the voxel size is reduced to v ¼ 0:12, perfor-
mance begins to decline. This is because the local semantic information
Fig. 10. Effect of embed adaptive object augmenta

Fig. 11. Qualitative results of the 3D object detection on KITTI val split (Top: PointPillars, Bottom
hard levels as green, yellow, and red, respectively. We also visualize detection results as cyan f
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of small voxel size is not discriminative. A significant performance de-
cline is observed when the voxel size is gradually increased from

0:162. The reason is that larger voxel sizes result in lower detection res-
olution and may also lead to under-segmentation problems. Therefore,

v ¼ 0:162 is a suitable voxel size for semantic information representa-
tion while maintaining efficiency.

4.4.3. Effect of adaptive object augmentation paradigm
Table 7 reports the effectiveness of different thresholds tn in the

AOA paradigm. The integration of AOA (tn ¼ 5) with our approach
outperforms that with AOA (tn ¼ 0) by a significant margin. This jus-
tifies our attempt to “paste” the augmented object in the ground
region containing the appropriate background point cloud, rather
than in the completely occluded region (no points). However, the
performance is observed to gradually decrease with increasing tn.
This is because objects of “moderate” or “hard” difficulty levels
are typically pasted in the sparse point cloud region, and tn will
affect the number of virtual objects in this region, resulting in a
sub-optimal performance.
tion paradigm into state-of-the-art detectors.

: 3D-VDNet). As a reference, we visualize the ground truth objects of easy, moderate, and
or comparison.



Table 8
Performance of the proposedmethodwith different configurations for pedestrians and cy-
clists on the KITTI val set. All results are reported by the APwith a 0.5 IoU threshold and 40
recall positions.

AOA SFA SMG Pedestrian 3D AP Cyclist 3D AP 3D mAP
(Mod.)

Easy Mod. Hard Easy Mod. Hard

(a) 64.79 58.99 55.6 83.97 60.6 56.33 59.8
(b) ✓ 64.96 59.24 54.72 88.34 62.92 58.70 61.08
(c) ✓ ✓ 66.06 59.54 54.77 89.21 65.72 61.22 62.63
(d) ✓ ✓ ✓ 67.98 61.33 57.44 88.69 65.89 61.34 63.61
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To further verify the effectiveness of our proposed AOA module, we
embed it into state-of-the-artmethods, such as SECOND [4], PointRCNN

[12], and Part A2 Net [30]. Fig. 10 demonstrates that following the em-
bedding of our proposed AOA module, all detectors outperform their
baseline by a notable margin, with average improvements of 1.1% and
1.3% mAP in 3D and BEV detections, respectively.

4.5. More results on pedestrian and cyclist

To further verify the effectiveness of the proposed modules, ex-
tensive experiments are performed on the pedestrian and cyclist
classes on the KITTI val set. The baseline result for Pedestrian and Cy-
clist model is achieved by setting the learning rate, training epochs,
batch size of each GPU, and the number of GT samples for cyclists
as 0.003, 80, 4, 10, respectively. Other implementation details follow
PointPillars. The hyperparameters k of the k� k filter in the SMG
module is set 3. Other hyperparameters for the optimal Pedestrian
and Cyclist model remain the same as the settings in the Car model.
The result in Table 8 demonstrates that our approaches combining
AOA, SFA, and SMG modules (d) booms the baseline (a) by a large
margin and each proposed module significantly outperforms its
counterpart.

5. Conclusion

In the current paper,we explore the potential of employing the point
cloud VDCs in pillars to optimize feature extraction and object augmen-
tation. More specifically, by leveraging the VDCs, we design a Spatial
Feature Aggregation module to fuse point-interactive and distribution
features for the extraction of robust features, construct a voxelized se-
mantic map to spatially enhance semantic embedding and describe a
simple yet effective object augmentation paradigm to overcome the
conflict between augmented objects and corresponding scenes. Exten-
sive experiments demonstrate that our framework significantly outper-
forms the baseline in all classes and the proposed object augmentation
paradigm that maintains a strong generalization ability under various
detectors. Our work provides a new perspective on voxel representa-
tions and the potential of the vertical distribution characteristics in
point clouds.

CRediT authorship contribution statement

Weiping Xiao: Conceptualization, Methodology, Software, Writing-
original-draft. Xiaomao Li: Supervision, Validation, Funding-
acquisition. Chang Liu: Writing-review-editing, Validation. Jiantao
Gao: Visualization, Data-curation. Jun Luo: Funding-acquisition. Yan
Peng: Project-administration, Funding-acquisition. Yang Zhou:
Writing-review-editing, Funding-acquisition.

Declaration of Competing Interest

The authors declare that they have no known competing financial
interests or personal relationships that could have appeared to influ-
ence the work reported in this paper.
11
Acknowledgments

This work was supported by the National Key Research and
Development Program of China [Grant No. 2020YFC1521700], the Joint
Founds of National Natural Science Foundation of China [Grant No.
U1813217], and the National Natural Science Foundation of China
[Grant No. 51904181].

References

[1] E. Arnold, O.Y. Al-Jarrah, M. Dianati, S. Fallah, D. Oxtoby, A. Mouzakitis, A survey on
3d object detection methods for autonomous driving applications, IEEE Trans. Intell.
Transp. Syst. 20 (10) (2019) 3782–3795, https://doi.org/10.1109/Tits.2019.
2892405.

[2] P. Hu, J. Ziglar, D. Held, D. Ramanan, What you see is what you get: exploiting visi-
bility for 3d object detection, in: 2020 IEEE/CVF Conference on Computer Vision and
Pattern Recognition (CVPR), 2020, pp. 10998–11006. doi:10.1109/CVPR42600.
2020.01101.

[3] Y. Zhou, O. Tuzel, Voxelnet: end-to-end learning for point cloud based 3d object de-
tection, in: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition
(CVPR), 2018, pp. 4490–4499. doi:10.1109/CVPR.2018.00472.

[4] Y. Yan, Y.X. Mao, B. Li, Second: sparsely embedded convolutional detection, Sensors
18 (10) (2018) https://doi.org/10.3390/s18103337.

[5] A.H. Lang, S. Vora, H. Caesar, L.B. Zhou, J.O. Yang, O. Beijbom, PointPillars: fast en-
coders for object detection from point clouds, in: 2019 IEEE/CVF Conference on
Computer Vision and Pattern Recognition (CVPR), 2019, pp. 12689–12697.
https://doi.org/10.1109/CVPR.2019.01298.

[6] Y.Y. Ye, H.J. Chen, C. Zhang, X.L. Hao, Z.X. Zhang, SARPNET: shape attention regional
proposal network for lidar-based 3d object detection, Neurocomputing 379 (2020)
53–63, https://doi.org/10.1016/j.neucom.2019.09.086.

[7] Y. Guo, H. Wang, Q. Hu, H. Liu, L. Liu, M. Bennamoun, Deep learning for 3d point
clouds: a survey, IEEE Trans. Pattern Anal. Mach. Intell. (2020) https://doi.org/10.
1109/TPAMI.2020.3005434 1–1.

[8] C.R. Qi, H. Su, K.C. Mo, L.J. Guibas, PointNet: deep learning on point sets for 3d classi-
fication and segmentation, in: 2017 IEEE/CVF Conference on Computer Vision and
Pattern Recognition (CVPR), 2017, pp. 77–85. https://doi.org/10.1109/CVPR.2017.16.

[9] C.R. Qi, L. Yi, H. Su, L.J. Guibas, PointNet++: deep hierarchical feature learning on
point sets in a metric space, in: Advances in Neural Information Processing Systems
30 (NIPS 2017), Vol. 30, 2017, pp. 5099–5108.

[10] C.R. Qi, W. Liu, C.X. Wu, H. Su, L.J. Guibas, Frustum pointnets for 3d object detection
from rgb-d data, in: 2018 IEEE/CVF Conference on Computer Vision and Pattern Rec-
ognition (CVPR), 2018, pp. 918–927. https://doi.org/10.1109/CVPR.2018.00102.

[11] Z. Yang, Y. Sun, S. Liu, X. Shen, J. Jia, Ipod: Intensive point-based object detector for
point cloud, CoRR abs/1812.05276 (2018).

[12] S.S. Shi, X.G. Wang, H.S. Li, Pointrcnn: 3d object proposal generation and detection
from point cloud, in: 2019 IEEE/CVF Conference on Computer Vision and Pattern
Recognition (CVPR), 2019, pp. 770–779. https://doi.org/10.1109/CVPR.2019.00086.

[13] Z.T. Yang, Y.A. Sun, S. Liu, X.Y. Shen, J.Y. Jia, Std: Sparse-to-dense 3d object detector
for point cloud, in: 2019 IEEE/CVF International Conference on Computer Vision
(ICCV), 2019, pp. 1951–1960. https://doi.org/10.1109/ICCV.2019.00204.

[14] C.R. Qi, O. Litany, K.M. He, L.J. Guibas, Deep hough voting for 3d object detection in
point clouds, in: 2019 IEEE/CVF International Conference on Computer Vision
(ICCV), 2019, pp. 9276–9285. https://doi.org/10.1109/ICCV.2019.00937.

[15] W. Liu, D. Anguelov, D. Erhan, C. Szegedy, S. Reed, C.Y. Fu, A.C. Berg, SSD: single shot
multibox detector, in: Proceedings of the European Conference on Computer Vision
(ECCV), vol. 9905, 2016, pp. 21–37. https://doi.org/10.1007/978-3-319-46448-0_2.

[16] S. Shi, C. Guo, L. Jiang, Z. Wang, H. Li, Pv-rcnn: Point-voxel feature set abstraction for
3d object detection, in: 2020 IEEE/CVF Conference on Computer Vision and Pattern
Recognition (CVPR), 2020, pp. 10526–10535. doi:10.1109/CVPR42600.2020.01054.

[17] Y.L. Chen, S. Liu, X.Y. Shen, J.Y. Jia, Fast point r-cnn, in: 2019 IEEE/CVF International
Conference on Computer Vision (ICCV), 2019, pp. 9774–9783. https://doi.org/
10.1109/ICCV.2019.00987.

[18] D.L. Wang, I. Posner, Voting for voting in online point cloud object detection, Robot.:
Sci. Syst. Xi (2015) https://doi.org/10.15607/RSS.2015.XI.035.

[19] M. Engelcke, D. Rao, D.Z.Wang, C.H. Tong, I. Posner, Vote3deep: fast object detection
in 3d point clouds using efficient convolutional neural networks, in: 2017 IEEE In-
ternational Conference on Robotics and Automation (ICRA), 2017, pp. 1355–1361.
https://doi.org/10.1109/ICRA.2017.7989161.

[20] B. Yang, W.J. Luo, R. Urtasun, Pixor: real-time 3d object detection from point clouds,
in: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR),
2018, pp. 7652–7660. https://doi.org/10.1109/CVPR.2018.00798.

[21] D.-S. Hong, H.-H. Chen, P. Hsiao, L. Fu, S. Siao, Crossfusion net: deep 3d object detec-
tion based on rgb images and point clouds in autonomous driving, Image Vis.
Comput. 100 (2020), 103955 https://doi.org/10.1016/j.imavis.2020.103955.

[22] S. Song, J. Xiao, Deep sliding shapes for amodal 3d object detection in rgb-d images,
in: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR),
2016, pp. 808–816. https://doi.org/10.1109/CVPR.2016.94.

[23] T.Y. Lin, P. Goyal, R. Girshick, K.M. He, P. Dollar, Focal loss for dense object detection,
in: 2017 IEEE International Conference on Computer Vision (ICCV), 2017, pp.
2999–3007. https://doi.org/10.1109/ICCV.2017.324.

[24] A. Geiger, P. Lenz, R. Urtasun, Are we ready for autonomous driving? the kitti vision
benchmark suite, in: 2012 IEEE Conference on Computer Vision and Pattern Recog-
nition (CVPR), 2012, pp. 3354–3361. https://doi.org/10.1109/CVPR.2012.6248074.

https://doi.org/10.1109/Tits.2019.2892405
https://doi.org/10.1109/Tits.2019.2892405
https://doi.org/10.3390/s18103337
https://doi.org/10.1016/j.neucom.2019.09.086
https://doi.org/10.1109/TPAMI.2020.3005434
https://doi.org/10.1109/TPAMI.2020.3005434
https://doi.org/10.15607/RSS.2015.XI.035
https://doi.org/10.1016/j.imavis.2020.103955


W. Xiao, X. Li, C. Liu et al. Image and Vision Computing 127 (2022) 104557
[25] X.Z. Chen, H.M. Ma, J. Wan, B. Li, T. Xia, Multi-view 3d object detection network for
autonomous driving, in: 2017 IEEE/CVF Conference on Computer Vision and Pattern
Recognition (CVPR), 2017, pp. 6526–6534. https://doi.org/10.1109/CVPR.2017.691.

[26] X.Z. Chen, K. Kundu, Y.K. Zhu, A. Berneshawi, H.M.Ma, S. Fidler, R. Urtasun, 3d object
proposals for accurate object class detection, in: Advances in Neural Information
Processing Systems 28 (NIPS 2015), vol. 28, 2015, pp. 424–432.

[27] D. Kingma, J. Ba, Adam: a method for stochastic optimization, in: 3rd International
Conference on Learning Representations ICLR, 2015.

[28] L.N. Smith, N. Topin, Super-convergence: very fast training of neural networks using
large learning rates, Artif. Intell. Mach. Learn. Multi-Domain Oper. Appl. 11006
(2019) https://doi.org/10.1117/12.2520589.

[29] S. Zhang, C. Chi, Y. Yao, Z. Lei, S.Z. Li, Bridging the gap between anchor-based and
anchor-free detection via adaptive training sample selection, in: 2020 IEEE/CVF
Conference on Computer Vision and Pattern Recognition CVPR, 2020, pp.
9756–9765. https://doi.org/10.1109/CVPR42600.2020.00978.

[30] S. Shi, Z. Wang, J. Shi, X. Wang, H. Li, From points to parts: 3d object detection from
point cloud with part-aware and part-aggregation network, IEEE Trans. Pattern
Anal. Mach. Intell. (2020) https://doi.org/10.1109/TPAMI.2020.2977026 1–1.
12
[31] M. Liang, B. Yang, Y. Chen, R. Hu, R. Urtasun,Multi-task multi-sensor fusion for 3d ob-
ject detection, in: 2019 IEEE/CVF Conference on Computer Vision and Pattern Recog-
nition (CVPR), 2019, pp. 7337–7345. https://doi.org/10.1109/CVPR.2019.00752.

[32] J. Ku, M. Mozifian, J. Lee, A. Harakeh, S.L. Waslander, Joint 3d proposal generation
and object detection from view aggregation, in: 2018 IEEE/RSJ International Confer-
ence on Intelligent Robots and Systems (IROS), 2018, pp. 5750–5757. https://doi.
org/10.1109/IROS.2018.8594049.

[33] Z.X. Wang, K. Jia, Frustum convnet: sliding frustums to aggregate local point-wise
features for amodal 3d object detection, in: 2019 IEEE/RSJ International Conference
on Intelligent Robots and Systems (IROS), 2019, pp. 1742–1749. https://doi.org/
10.1109/IROS40897.2019.8968513.

[34] M. Simon, S. Milz, K. Amende, H.M. Gross, Complex-yolo: an euler-region-proposal
for real-time 3d object detection on point clouds, in: Proceedings of the European
Conference on Computer Vision (ECCV), vol. 11129, 2019, pp. 197–209. https://
doi.org/10.1007/978-3-030-11009-3_11.

[35] M. Liang, B. Yang, S.L.Wang, R. Urtasun, Deep continuous fusion formulti-sensor 3d ob-
ject detection, in: Proceedings of the European Conference on Computer Vision (ECCV),
vol. 11220, 2018, pp. 663–678. https://doi.org/10.1007/978-3-030-01270-0_39.

https://doi.org/10.1117/12.2520589
https://doi.org/10.1109/TPAMI.2020.2977026

	3D-�VDNet: Exploiting the vertical distribution characteristics of point clouds for 3D object detection and augmentation
	1. Introduction
	2. Related work
	2.1. LiDAR-based 3D object detection
	2.2. Representation learning on voxels
	2.3. 3D object augmentation

	3. 3D-VDNet detector
	3.1. Preliminaries
	3.2. Overall framework
	3.3. Spatial feature aggregation
	3.4. Semantic map generation
	3.5. Adaptive object augmentation
	3.6. Loss function

	4. Experiments
	4.1. Datasets and evaluation
	4.2. Implementation details
	4.3. Main results
	4.4. Ablation studies
	4.4.1. Effect of spatial feature aggregation module
	4.4.2. Effect of semantic map generation module
	4.4.3. Effect of adaptive object augmentation paradigm

	4.5. More results on pedestrian and cyclist

	5. Conclusion
	CRediT authorship contribution statement
	Declaration of Competing Interest
	Acknowledgments
	References




